
2020 | Non-confidential

Dependency ordering
in the Linux kernel
Will Deacon <will@kernel.org>

2020 | Non-confidential

Hardware

The sorry state of dependency ordering

CPU architectures guarantee that some dependencies
enforce externally-visible ordering between memory
accesses

Performance
Dependency ordering is generally cheaper than using explicit
fences, particularly where the dependency exists naturally as
part of the algorithm.

Linux
The kernel relies on dependency ordering as a basis for RCU,
but also to implement ring buffers and parts of the scheduler
using volatile casts (READ_ONCE/WRITE_ONCE)

C Compiler
No high-performance implementations exist of
memory_order_consume and the kernel does not follow
the C11 memory model anyway.

2020 | Non-confidential

Types of dependency

Please try to use this terminology!

Control dependency Data dependency Address dependency

x = READ_ONCE(*foo);
if (x > 42)

WRITE_ONCE(*bar, 1);

● Read -> write generally
ordered by all CPU
architectures

● Read -> read control
dependencies can often be
reordered by hardware!

x = READ_ONCE(*foo);
x += 42;
WRITE_ONCE(*bar, x);

● Read -> write only
● Supported by all CPU

architectures

x = READ_ONCE(*foo);
bar = &x[42];
y = READ_ONCE(*bar);

● Read -> read/write
● rcu_dereference()
● Ordered by all CPU

architectures other than
Alpha (where we insert a
fence)

2020 | Non-confidential

Harmful compiler transformations

Converting a read -> read address
dependency into a control dependency

breaks hardware ordering!

x = READ_ONCE(*foo);
bar = &x[42];
y = READ_ONCE(*bar);

x = READ_ONCE(*foo);
if (x == baz)

bar = &baz[42];
else

bar = &x[42];
y = READ_ONCE(*bar);

Address dependency Control dependency

https://lore.kernel.org/linux-arm-kernel/20200630173734.14057-19-will@kernel.org/
https://lore.kernel.org/lkml/20150520005510.GA23559@linux.vnet.ibm.com/

https://lore.kernel.org/linux-arm-kernel/20200630173734.14057-19-will@kernel.org/
https://lore.kernel.org/lkml/20150520005510.GA23559@linux.vnet.ibm.com/

2020 | Non-confidential

Harmful compiler transformations

Converting a read -> read address
dependency into a control dependency

breaks hardware ordering!

seq = READ_ONCE(tkf->seq.sequence);
tkr = tkf->base + (seq & 0x01);
now = tkr->base;

tkr = tkf->base;
seq = READ_ONCE(tkf->seq.sequence);
if (seq & 0x01)

tkr++;
now = tkr->base;

Address dependency Control dependency

https://lore.kernel.org/kernel-hardening/20200625085745.GD117543@hirez.programming.kicks-ass.net/

https://lore.kernel.org/kernel-hardening/20200625085745.GD117543@hirez.programming.kicks-ass.net/

2020 | Non-confidential

We actually disable lots of "valid" (read: the standard allows
them, but they are completely wrong for the kernel)

optimizations because they are wrong.

[...]

So in general, we very much expect the compiler to do sane
code generation, and not (for example) do store tearing on
normal word-sized things or add writes that weren't there

originally etc.

-- Linus Torvalds

https://lore.kernel.org/lkml/CAHk-=wi_KeD1M-_-_SU_H92vJ-yNkDnAGhAS=RR1yNNGWKW+aA@mail.gmail.com/

https://lore.kernel.org/lkml/CAHk-=wi_KeD1M-_-_SU_H92vJ-yNkDnAGhAS=RR1yNNGWKW+aA@mail.gmail.com/

2020 | Non-confidential

Some discussion points

Can we provide tooling to help the kernel use dependency ordering without disabling compiler
optimisations on a case-by-case basis?

० How can we enforce dependencies at the source level?

० Can we detect broken dependencies and/or insert fences?

० Are annotations a non-starter?

० Does LTO make the situation worse?

० Where do we draw the line between “optimising compiler” and “portable assembler”?

Please don’t throw the standard at us! :)
https://wg21.link/p0124

