Dependency ordering
in the Linux kernel

Will Deacon <will@kernel.org>

The sorry state of dependency ordering

Hardware

Performance

Linux

C Compiler

CPU architectures that some dependencies
enforce externally-visible ordering between memory
accesses

Dependency ordering is generally than using explicit
fences, particularly where the dependency exists naturally as
part of the algorithm.

The as a basis for RCU,
but also to implement ring buffers and parts of the scheduler
using volatile casts (READ ONCE/WRITE ONCE)

No high-performance implementations exist of
memory order consume and the
anyway.

android

Types of dependency

Please try to use this terminology!

—— X = READ ONCE (*foo);
if (x > 42)
. WRITE_ONCE (*bar, 1);

e Read -> write generally
ordered by all CPU
architectures

e Read->read control
dependencies can often be
reordered by hardware!

X =
X += 42;
L5 WRITE_ONCE (*bar, x);

READ ONCE (*fo0) ;

Read -> write only
Supported by all CPU
architectures

bar =

—— x = READ ONCE (*foo0) ;

&x[427;

L. y = READ ONCE (*bar) ;

Read -> read/write

rcu dereference ()
Ordered by all CPU
architectures other than
Alpha (where we insert a
fence)

android

Harmful compiler transformations

Converting a read -> read address
dependency into a control dependency
breaks hardware ordering!

x = READ ONCE (*foo) ; x = READ ONCE (*foo) ;

bar = &x[42]; if (x == baz)

y = READ ONCE (*bar) ; bar = &baz[42];
else

bar = &x[42];
y = READ ONCE (*bar) ;

https://lore.kernel.ora/linux-arm-kernel/20200630173734.14057-19-will@kernel.org/
https://lore.kernel.org/lkml/20150520005510.GA23559@linux.vnet.ibm.com/

android

https://lore.kernel.org/linux-arm-kernel/20200630173734.14057-19-will@kernel.org/
https://lore.kernel.org/lkml/20150520005510.GA23559@linux.vnet.ibm.com/

seq =

tkr
now

Harmful compiler transformations

READ ONCE (tkf->seq.sequence) ;

tkf->base +
tkr->base;

Converting a read -> read address
dependency into a control dependency
breaks hardware ordering!

(seq & 0x01);

tkr = tkf->base;
seq = READ ONCE (tkf->seq.sequence) ;
if (seq & 0x01)
tkr++;
now = tkr->base;

https://lore.kernel.org/kernel-hardening/20200625085745.GD 11754 3@hirez.programming.kicks-ass.net/

android

https://lore.kernel.org/kernel-hardening/20200625085745.GD117543@hirez.programming.kicks-ass.net/

We actually disable lots of "valid” (read: the standard allows
them, but they are completely wrong for the kernel)
optimizations because they are wrong.

[.]

So in general, we very much expect the compiler to do sane
code generation, and not (for example) do store tearing on
normal word-sized things or add writes that weren't there
originally etc.

-- Linus Torvalds

https://lore.kernel.org/lkml/CAHk-=wi KeD1M- - SU H92vJ-yNkDnAGhAS=RR1yNNGWKW+aA@mail.gmail.com/
android

https://lore.kernel.org/lkml/CAHk-=wi_KeD1M-_-_SU_H92vJ-yNkDnAGhAS=RR1yNNGWKW+aA@mail.gmail.com/

Some discussion points

Can we provide tooling to help the kernel use dependency ordering without disabling compiler
optimisations on a case-by-case basis?

o How can we enforce dependencies at the source level?

o Can we detect broken dependencies and/or insert fences?

o Are annotations a non-starter?

o Does LTO make the situation worse?

o Where do we draw the line between “optimising compiler” and “portable assembler”?

Please don't throw the standard at us! :)
https://wg21.link/p0124

android

