A Ridiculously Short Intro into Device Attestation

Dimitar Tomov, DesignFirst, Estonia
Ian Oliver, Nokia Bell Labs, Finland
Overview

• What is Attestation? (Ian, 10 mins)
• TPM and Measurements
 • How, What, Why
• Reporting and Quoting
 • Structure and Contained Data
• What to Attest
 • Identity, Firmware, Configuration, etc
• Rules
 • Attest, Verify, Decide
• Example (Dimitar, 10 mins)
 • Time Attestation for Network Monitoring
What is attestation?

- The process of providing evidence that something is true
TPM and Measurements

How the **** do things boot and what gets measured?!
Reporting and Quoting
What to Attest?

- Quote Type/Magic
- Identity (signature and signer)
- Configuration
- Clock
- Firmware
- Nonce & Arbitrary Data
- History
Attestation Rules

<table>
<thead>
<tr>
<th>TPM 2.0 Quote Rules</th>
<th>Attestation Timeliness Rules</th>
<th>History/Assurance Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is it a quote?</td>
<td>Did the device respond to the quote request in a timely manner?</td>
<td>Has the device changed in any way since the last quote?</td>
</tr>
<tr>
<td>Signed and matches the qualified signer?</td>
<td>Did the device process the quote request in a timely manner?</td>
<td>...and for what properties?</td>
</tr>
<tr>
<td>Nonce + additional data correct?</td>
<td>Was the response consistent with network latencies (where applicable)?</td>
<td>Does the device verify against the selected rules for its LoA?</td>
</tr>
<tr>
<td>Does the attested value match the known good value?</td>
<td>-</td>
<td>What set of PCRs is required for a minimum LoA?</td>
</tr>
<tr>
<td>Is the device running the correct firmware?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Has the device been rebooted?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Is the clock increasing correctly?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Was the device shutdown correctly?</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Who decides if it is trusted?

- CRTM/SRTM Measures from BIOS/UEFI/Firmware/ACM etc.
- TPM 2.0 Root of Trust for Reporting
- Attestation and Verification Services
- End user

Subtle hint
Example – Time attestation

• How to attest time?
 • TPM time evidences
• How to attest identity?
 • TPM key based identity
• Choosing a TPM stack(library)
• Time attestation as a timestamp
• Attestation server
• Use cases
 • Data center
 • IoT fleet

Periodically attest
Tamper-proofed HW time
Verify
Decide
Motivation

• Establish identity & temporal trust across devices & systems
 • Attesting the TPM time and clock is a special case
 • Root of Trust for Reporting is the TPM
 • The data being attested is physically internal to the TPM (hint: Vs. Data is fed to the PCRs)
• Periodic attestation

<table>
<thead>
<tr>
<th>Equipment or device type</th>
<th>Importance</th>
<th>Sampling period (of attestation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical infrastructure</td>
<td>High</td>
<td>1 minute</td>
</tr>
<tr>
<td>User stations, Nodes in the field</td>
<td>Medium</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Everything else</td>
<td>Low</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
GetTime vs Quote(PCR)

• Data is fed to the PCR – How to guarantee what is being measured?
GetTime vs Quote(PCRs)

- TPM2_Quote gives an evidence
- But who creates the evidence?
- We need secure environment
- We need secure application

Vs

- TPM2_GetTime gives an evidence
- The evidence is created completely internally to the TPM
- No need of secure environment

Note: In both cases an action is needed when a fresh evidence is not received. It would be a form of denial-of-service(DoS) attack.
Choosing a TPM stack (library)

- Mature stacks vs New stacks

<table>
<thead>
<tr>
<th>TPM stack</th>
<th>Interface(s)</th>
<th>Attestation example</th>
<th>Embedded Systems use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infineon/Intel TSS</td>
<td>TCG spec. ESAPI, (soon) FAPI</td>
<td>No. Separate project, "CHARRA" by Fraunhofer</td>
<td>Yes for Linux-based systems</td>
</tr>
<tr>
<td>IBM TSS</td>
<td>Own API 1:1 TPM commands</td>
<td>Yes. "IBM open-source attestation server(ACS)"</td>
<td>Yes for Linux-based systems</td>
</tr>
<tr>
<td>New Google Go-TPM</td>
<td>1:1 TPM commands + mild layer on top</td>
<td>Yes. "Go-Attestation"</td>
<td>Needs Golang for non-Linux embedded systems</td>
</tr>
<tr>
<td>New WolfSSL WolfTPM</td>
<td>Own rich API (wrappers) 1:1 TPM commands</td>
<td>Yes. Signed timestamp and local attestation</td>
<td>Baremetal and Linux-based</td>
</tr>
</tbody>
</table>
How to attest time?

• Trust the only IC in your system with physical tamper protection
• Use a standard TPM2.0 command TPM2_GetTime

• Get signed evidence of
 • Built-in hardware time
 • Current uptime of the TPM since the last power-on
 • Built-in hardware clock
 • Total time the TPM has ever been on
 • Reset counter
 • How many times the system has been rebooted since a TPM clear (i.e. provisioning)
Time attestation as a timestamp

- TPM uptime since last power-up
 - 44 hours 57 minutes
- Total time the TPM has been on
 - 57 days 8 hours 52 minutes
- Reset count
 - 17 power cycles
What is in the TPM signed time evidence?

• Standard TPM-generated attestation block with
 • TCG defined data structure called TPMS.TIME_ATTEST_INFO
 • TPMT_SIGNATURE holding the signature over the data

TPMS.TIME_ATTEST_INFO

 firmware version
 TPMS.TIME_INFO
 time
 TPMS_CLOCK_INFO
 Clock
 ResetCount
 RestartCount
 Safe
How to attest identity?

• Use a standard TPM2.0 command TPM2_Create

• Create asymmetric key pair known as “Attestation Key” (AK)
 • Private part can be used only by the TPM that created the AK
 • Public part naturally used to verify the evidence signature and decrypt
 • Possible to have a certificate authority and have rolling AK
 • Possible to have anonymous attestation for privacy reasons

NB: The AK is a key generated from the TPM that cannot be migrated between TPMs. Internally, the TPM can use AK only for signing specific TPM-generated structures. No other keys have this property. Therefore, the EK and AK are effectively a unique identity for that TPM.
Attestation Server

Decision making
- Slicing between trusted and untrusted information
 - TPM attested data: TPM time, TPM clock, TPM reset counter
 - On-premise network monitoring data
 - Third party data from cloud monitoring
Use cases

Data center
- Limited trust in the HW and software vendor
- Allows to verify the maintenance periods
- Allows to verify the network and monitoring data
- End users and customers can have digital trust in their rented or cohosted servers.

IoT Fleet
- Improves security for Edge devices with high risk of physical tampering
- Helps protect maintenance and battery indicator
- Generating rich attestation data on IoT devices is not possible or it is expensive
- Set of trust qualities needed
TLDR

• A system can have **trusted qualities** instead of being 100% trusted
• Cross-referencing different types of attestation data can provide evidence for trusted qualities.
• The decision of whether a device is trusted is not responsibility of the attestor and verifier – these just gather and check the evidence.
• TPM time attestation can be trusted without trust in the system.
• Multiple attestation servers (including external attestation servers) are useful for cross-checking attested data.
Contact us for more information

Dimitar Tomov, DesignFirst
 • https://tpm.dev
 • Twitter @tomov_eu

Ian Oliver, Nokia Bell Labs
 • https://www.bell-labs.com/usr/ian.oliver
 • Twitter @i_j_oliver