
Restricted Kernel Address Spaces

Mike Rapoport
<rppt@linux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 825377

● Speculation vulnerabilities won’t disappear soon

● Address space isolation can be a mitigation
○ PTI, KVM ASI

● Restricting kernel access to memory makes things safer

Post Meltdown era

✓ EFI

✓ Page table isolation

● ASI for virtual machines

● Process local memory

● Exclusive user mappings

● KVM protected memory

Restricted mappings in the kernel

ASI for virtual machines

● Mitigation for L1F and alike

with HT enabled

● Restricted context for KVM

kernel code

Kernel Page
Table

User space

Kernel space

Kernel entry

KVM Page Table

Kernel entry

User space

Kernel space

Process local memory

● A variant of kmalloc()

● Memory is visible only in the

context of a specific process
○ Dropped from the direct map

○ Remapped in a dedicated virtual

address range

● Use cases

○ vCPU state, VMCS

Other processes

User space

Kernel space

Kernel entry

Process A

Kernel entry

User space

Kernel space

Exclusive user mappings

Kernel Page
Table

User space

Kernel space

Kernel entry

User Page Table

Kernel entry

User space

Kernel space

● Memory region mapped only

in a single process page table
○ Excluded from the direct map

● Use-cases
○ Store secrets

○ Protect the entire VM memory

KVM protected memory

● Remove guest memory

from the direct map

● Allow hypervisor access in

very particular way

Kernel page table

User space

Kernel space

Kernel entry

Virtual machine

User space

Kernel space

Kernel entry

Guest memory

● Page table creation and management

● Context switching

● State tracking

Generalizing ASI approach

● Clone page table
○ Similar to copy_page_range()

○ Caller defines what level is shared

clone_range(dst, src, va_start, va_end, level)

● Map range
map_range(dst, virt, phys, prot, nr_pages)

● Unmap range
unmap_range(dst, virt, nr_pages)

High level API

● Use pXd_t directly
○ Unfriendly to concurrent updates and tear down

● Use mm_struct
○ Most data is dedicated to userspace mm

○ Weird constructs appear

 clone_range(dst_mm, user_pgd(dst_mm->pgd),

 src_mm, user_pgd(src_mm->pgd))

● Add new abstraction for page table

Page table representation alternatives

struct pg_table {

 pgd_t *pgd;

 spinlock_t page_table_lock;

 atomic_t pgtables_bytes;

 pt_context_t pt_context;

 unsigned long cpu_bitmask[];

}

Introduce struct pg_table

struct mm_struct {

- pgd_t pgd;

- spinlock_t page_table_lock;

- atomic_t pgtables_bytes;

 ...

+ struct pg_table pgt;

};

● Convert users of mm->pgd, mm->page_table_lock, …
○ Use mm_pgd(mm), mm_pgt(mm) helpers

○ Can be automated with semantic patch

● Add APIs that operate on struct pg_table

Introduce struct pg_table

__foo(struct pg_table *pgt)
{
 /* do stuff */
}

foo(struct mm_struct *mm)
{
 __foo(mm_pgt(mm));
}

● Ensure PageTable type is set on all page table pages
○ Important for tear down

○ Allows using two unsigned longs in struct page

● Easy access to mm_struct for user page tables

Introduce struct pg_table

if (is_user_pgt(pgt)) {
 struct mm_struct *mm =
 container_of(pgt, mm_struct, pgt);

 bar(mm);
}

● Split fields from mm_context_t to pt_context_t

● Implement context switching for pg_table

Introduce struct pg_table

void switch_pgt(struct pg_table *prev, struct pg_table *next,
 struct task_struct *tsk)
{
 /* do the switch */
}

void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 struct task_struct *tsk)
{
 switch_pgt(&prev->pgt, &next->pgt, tsk);
}

Freeing Restricted Page Tables

● Integration with existing TLB management infrastructure

○ Avoid excessive TLB shootdowns

● Special care for shared page table levels

○ Avoid freeing main kernel page tables

● page::_pt_pad_1 and page::_pt_pad_2 come handy

Open issues

● Actually set PageTable type for page tables
○ Early page tables do not have it

● Placement of cpu_bitmap
○ Naturally belongs to pg_table, but putting it there taints struct

randomization

● Intermix of page table and userspace memory

management semantics in mm_context_t

Private Memory Allocations

● Extend alloc_page() and kmalloc() with context

awareness

● Pages and objects are visible in a single context

○ Can be a process or all processes in a namespace

● Special care for objects traversing context boundaries

17

Per-Context Allocations

● Allow per-context allocations
○ __GFP_EXCLUSIVE - for pages

○ SLAB_EXCLUSIVE - for slabs

● Drop pages from the direct map on allocation,

put them back on freeing
○ set_direct_map_invalid_noflush()
○ set_direct_map_default_noflush()

● Need for synchronization of all page tables

● New type for kernel pages
○ PageFromRestrictedContext

● Hide user pages behind anonymous inode
○ Similar to anonymous HugeTLB

○ Differentiate using page->mapping

Marking pages in restricted mappings

● Direct map uses 2nd and 3rd level leaf pages
○ 1G and 2M on x86

● Removing pages from the direct map fragments it
○ s/1G page/512 2M pages/ s/2M page/512 4K pages/

○ Performance degradation

Direct map fragmentation

● Preallocate memory at boot and manage it separately
○ Similar to mem=X

○ Kernel still can access memory with gup()/kmap() like APIs

● Use local pools of large pages
○ Exclusive user mappings, SL*Bs

● Add direct map layout awareness to page allocator

Keeping large pages in the direct map

● Support for 4M pages for Pentium CPU
○ Version 1.3.16 (1995)

+ pgd_val(pg_dir[0]) = _PAGE_TABLE | _PAGE_4M | address;

● Support for 1G pages for AMD Fam10h CPU

Large pages in the direct map

commit ef9257668e3199f9566dc4a31f5292838bd99b49
Author: Andi Kleen <ak@suse.de>
Date: Thu Apr 17 17:40:45 2008 +0200

 x86: do kernel direct mapping at boot using GB pages

The AMD Fam10h CPUs support new Gigabyte page table entry for
mapping 1GB at a time. Use this for the kernel direct mapping.

Direct map fragmentation

● ThinkPad T480
○ i7-8650U CPU @ 1.90GHz

○ 32G RAM, WDC SN720 SSD

● Benchmarks
○ FS-mark, pgbench, redis, apache, kbuild

● Configurations
○ Force the entire direct map to 4K or 2M pages

○ SSD vs tmpfs

○ mitigations=off vs mitigations=on

Direct map fragmentation

4K

1G

2M

Conclusion

● Using restricted contexts improves security

● Reworking kernel address space management is a major
challenge

● Direct map fragmentation is not a disaster

References

● ASI RFC v4
https://lore.kernel.org/lkml/20200504144939.11318-1-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20200504145810.11882-1-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20200504150235.12171-1-alexandre.chartre@oracle.com/

● Proclocal
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/

● Exclusive user mappings
https://lore.kernel.org/lkml/20200818141554.13945-1-rppt@kernel.org/

● KVM Protected memory
https://lore.kernel.org/lkml/20200522125214.31348-1-kirill.shutemov@linux.intel.com

https://lore.kernel.org/lkml/20200504144939.11318-1-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20200504145810.11882-1-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20200504150235.12171-1-alexandre.chartre@oracle.com/
https://lore.kernel.org/lkml/20190612170834.14855-1-mhillenb@amazon.de/
https://lore.kernel.org/lkml/20200818141554.13945-1-rppt@kernel.org/
https://lore.kernel.org/lkml/20200522125214.31348-1-kirill.shutemov@linux.intel.com

References

● struct pg_table
https://git.kernel.org/pub/scm/linux/kernel/git/rppt/linux.git/log/?h=pg_table/v0.0

● 4M pages for Pentuim CPU
https://github.com/mpe/linux-fullhistory/commit/10a137bfab8acd637fe98a74c5d3d7b3

31b67dc8#diff-f3ec8be0f5e88a2c3dff2d2b2b4fdb93

● 1G pages for AMD Fam10h CPU
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ef925766
8e3199f9566dc4a31f5292838bd99b49

● Benchmarks
https://docs.google.com/spreadsheets/d/1tdD-cu8e93vnfGsTFxZ5YdaEfs2E1GELlvWNOG
kJV2U/edit?usp=sharing

https://git.kernel.org/pub/scm/linux/kernel/git/rppt/linux.git/log/?h=pg_table/v0.0
https://github.com/mpe/linux-fullhistory/commit/10a137bfab8acd637fe98a74c5d3d7b3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ef9257668e3199f9566dc4a31f5292838bd99b49
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ef9257668e3199f9566dc4a31f5292838bd99b49
https://docs.google.com/spreadsheets/d/1tdD-cu8e93vnfGsTFxZ5YdaEfs2E1GELlvWNOGkJV2U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1tdD-cu8e93vnfGsTFxZ5YdaEfs2E1GELlvWNOGkJV2U/edit?usp=sharing

Thank you!

