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Abstract

Multipath TCP is a recent TCP extension that allows de-
vices like today’s smartphones or laptops to send and receive
data over multiple interfaces for better resource utilization,
throughput, and reaction to failures and handover. While
interest is growing in this new TCP extension, this proto-
col is not currently supported by the upstream Linux kernel.
A community project is underway to add Multipath TCP to
the upstream Linux kernel, with baseline features arriving
first and plans to continue maintenance and development
in later kernel versions.

Introduction

Multipath TCP (MPTCP) is an increasingly popular protocol
that members of the kernel community are actively working
to upstream. An out-of-tree Linux kernel implementing the
protocol has been developed and maintained since March
2009 [1]. While there are some large MPTCP deployments
using this custom kernel [2], an upstream implementation
will make the protocol available on Linux devices of all fla-
Vors.

MPTCP is closely coupled with TCP, but an implemen-
tation does not need to interfere with operation of normal
TCP connections. The MPTCP Linux Upstream roadmap
begins with the server use case, where both initial MPTCP
connections and additional path connections are generally
initiated by peer devices. This will start with RFC 6824 [3]
compliance, but with a minimal feature set to limit the code
footprint for initial review and testing.

The MPTCP upstreaming community has shared an RFC
patch set on the netdev list that shows their progress and
how they plan to build around the TCP stack. This paper
explains the consensus decisions that this community has
reached and shares the roadmap for how this patch set will
evolve before submission.

With baseline MPTCP code merged, community mem-
bers have further plans to develop more advanced fea-
tures for managing subflow creation (path management),
scheduling outgoing packets across TCP subflows, and
other capabilities important for client devices that initiate
connections. This includes making use of a userspace path
manager, which is already available as an alpha release.
Support for additional TCP features and optimization of

MPTCP performance are also expected as wider availabil-
ity of MPTCP in Linux leads to more feedback from kernel
users.

Unfortunately, Multipath TCP is in the end a complex
protocol that poses certain challenges when integrating
with a TCP stack [5]. It has to be in order to work in a world
full of middleboxes that can be hostile to new TCP exten-
sions [4]. Some concepts and terminology are also specific
to MPTCP. To establish a foundation with the MPTCP pro-
tocol to help understand the features discussed later in the
paper, the next section has an overview of MPTCP, as also
explained in the previous paper by these authors [5]. After
that, Section 2 details how the first patch set will be com-
posed. Before the conclusion, Section 3 describes the fea-
tures that will further evolve MPTCP for Linux to meet the
needs of more devices and users.

1 Multipath TCP Overview

On both wired and wireless networks TCP is the dominant
transport protocol. At 45 years old TCP has evolved con-
tinuously and includes various optimizations. Multipath
TCP is a recent major extension to TCP [3, 6] that allows de-
vices to exchange data for a single connection over different
paths simultaneously.

1.1 Use-cases

Multipath TCP was standardized in early 2013, almost 30
years after the standardization of TCP [7]. Even though
this extension is young, it is already used to support sev-
eral commercial services [2]. The first and most significant
deployment is at Apple. In September 2013, Apple enabled
Multipath TCP on iPhones and iPads in support of the Siri
voice-recognition application. Their main motivation for
using Multipath TCP was to provide smooth handovers be-
tween Wi-Fi and cellular while users are physically moving
while interacting with Siri. Given the success of this deploy-
ment, Apple enabled Multipath TCP for all applications on
iOS in September 2017 and is going to use it for more of
their own applications in 2019 [8].

The second significant deployment is on Android smart-
phones. Since July 2015, the out-of-tree implementation
of Multipath TCP in a Linux kernel [1] is used in high-end
smartphones from Samsung and LG to bond Wi-Fi and
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4G/LTE to achieve higher bandwidth. Korea Telecom has
reported download speeds of 800 Mbps and more.

Another important use case for Multipath TCP is with
Hybrid Access Networks [9]. To provide faster Internet
services, notably in rural areas, several network operators
have decided to combine their xDSL network and their LTE
network together. One of the solutions standardized by
the Broadband Forum to create such hybrid networks uses
Multipath TCP proxies [10]. Several operators have already
deployed this solution.

Given all of these use cases and their scope it can be ex-
pected that Multipath TCP traffic will grow in the coming
years. Also significant is selection of MPTCP by the 3GPP
organization to play an important role in the emerging 5G
network architectures[11] where it will be used to provide
the Access Traffic Steering, Switching & Splitting (ATSSS)
core networking function.

1.2 Differences in requirements and features from
existing implementation

Multipath TCP has five known independent imple-
mentations [12]. These are on the following platforms:
GNU/Linux with a fork of the Linux kernel [1], Apple
iOS and MacOS [13], Citrix load balancers, FreeBSD [14],
and Oracle Solaris. The first three implementations are
known to interoperate. Three are open source (Linux
kernel, FreeBSD and Apple’s iOS and MacOS). Apple’s
implementation is widely deployed.

The existing out-of-tree Linux kernel implementation of
Multipath TCP started off as a research project during the
standardization phase. With an evolving specification, the
community defining the MPTCP protocol needed an open
implementation that could support experiments and rapid
changes. During that time the code was not designed for
easy upstream inclusion but rather to quickly meet the
needs of the standardization community and showcase the
benefits and potential of MPTCP. Over time, this implemen-
tation has been used as the basis for several of the above-
mentioned MPTCP deployments [12].

However, it should be noted that those deployments all
target a specialized infrastructure and configuration where
the platform has tight control over how the kernel is be-
ing used. The MPTCP Linux kernel is deployed either on
smartphones where the vendors specifically configured the
system for this use-case, or on embedded platforms and
servers where the vendor fully controls the configuration
and environment of the deployment.

The design of the out-of-tree implementation [1] is not
well-suited for the more generic upstream Linux kernel. It
significantly changes core TCP code and data structures as
it was initially built to add multipath functionality to ev-
ery TCP connection. In contrast, an upstream design must
fit within and around the existing TCP stack, not intro-
duce any performance regressions, be maintainable, and
be straightforward to configure and use in a variety of de-
ployments.

1.3 Protocol concepts

MPTCP uses the multiple network interfaces of a host by
creating separate TCP connections, called TCP subflows, on
each of those interfaces. Those subflows are then used to
transmit and receive data. The data that is sent from the
application is dynamically split across those subflows. As
MPTCP still guarantees in-order delivery of the data stream,
the data that is sent on each subflow needs an additional se-
quence number to allow the receiver to reconstruct the ap-
plication stream. This so-named data sequence number is
put in the TCP option space. All of the signaling in MPTCP
is done in the TCP option space. Examples of this signal-
ing are capability negotiation, authentication, address an-
nouncement, and error signaling.

Using the TCP option space and separate TCP subflows
that look like normal TCP connections enables MPTCP to
be globally deployed on the current Internet despite the
presence of various stateful middleboxes and firewalls [4].
MPTCP is thus in some sense a middle layer between the
transport (TCP) and the application, while using TCP op-
tions for signaling.

However, this design also implies that the MPTCP mid-
dle layer requires very tight control over how the TCP stack
behaves. MPTCP needs to direct TCP to include specific op-
tions in the TCP header associated with specific data, and it
needs to force the TCP stack to send specific segments like
ACK, FIN, or RST.

The most notable areas of low-level TCP control and se-
mantic modifications are:

Coupled receive windows across TCP subflows The re-
ceive window is shared across all the subflows involved in
a MPTCP connection. The flow-control exercised by the
application needs to apply to the overall MPTCP connec-
tion across all TCP subflows [6]. Where a regular TCP con-
nection has exclusive control over its own receive window,
MPTCP subflows need to safely access shared data in the
MPTCP middle layer to manage and advertise the window
size.

Sending of ACKs to signal options MPTCP announces
subflow priorities or changes of addresses to the peer, e.g.
when a mobile host disconnects from Wi-Fi, MPTCP can
signal this via the cellular interface [15]. As MPTCP uses
TCP options for such signaling, the MPTCP layer needs an
interface to trigger the sending of a TCP ACK segment that
includes the specific TCP option.

Reception of ACKs with signaling options Upon recep-
tion of TCP ACKs with an MPTCP signal, the MPTCP layer
needs access to the MPTCP option values in order to take
action. For example, if a smartphone moves out of the Wi-Fi
range, it will send a "remove-address" message to the server
inside a TCP ACK that includes the MPTCP option in the
TCP option space. The smartphone will send this TCP ACK
on the TCP subflow that is routed via the cellular interface.
Upon reception of this segment, the MPTCP stack on the
server-side will need to tear down the subflow that is linked
to the Wi-Fi interface.



Data-stream MPTCP utilizes a data-sequence number
(DSN) that maps every byte sent on each subflow to the
application-level byte-stream [3]. The data-sequence num-
ber is sent as part of a TCP option with outgoing data seg-
ments. During the generation of the TCP header, the TCP
stack needs to access metadata associated with the pay-
load.

The same holds true on the receiver side. Incoming data
also has its DSN stored in the TCP option space. When re-
ceiving data, the contents of TCP options are not exposed
outside the TCP layer as traditionally TCP options only have
a meaning for the TCP state machine. MPTCP breaks with
this assumption as the data sequence number needs to be
communicated up to the MPTCP layer to reconstruct the
byte stream.

1.4 RFC 6824bis, aka MPTCP v1

A new version of Multipath TCP protocol is nearing re-
lease [17]. It has been submitted to IESG for publication.
This document is currently called RFC 6824bis and will be
assigned a new number when the standard is released. It
introduces some behavioral changes in the protocol which
necessitates the version changing from vO0 to vl. The cur-
rent version [3] is (and will remain) Experimental while the
new one [17] will be Standard.

The differences between the two versions are listed in
Appendix E of RFC 6824bis [17]. The major change that
impacts the implementation is the way the initialization is
done: the initiator’s key is no longer included in the SYN
packet. Among other advantages, this reduces the num-
ber of TCP option bytes consumed by MPTCP, allowing
other TCP options like TCP Fast Open Cookie Request to
be present. There are also some changes in some signaling
options, e.g. it is possible to add a reason when removing
one path and the ADD_ ADDR is now reliable. Other changes
also help simplify the implementation like the fast-close:
with the new version, it is possible to send a RST on all sub-
flows and stop maintaining a state for potential retransmis-
sions of the MP_ FASTCLOSE signal included in a ACK. This
allows the host to tear down the subflows and the connec-
tion immediately which makes more sense for a fast-close
when resources need to be freed quickly.

For the moment, no known implementation supports
this new version of the protocol. The out-of-tree MPTCP
implementation [1] has some RFC patches posted [18] but
they still need to be finalized.

2 First Patch Set Upstreaming Roadmap

A community group consisting of developers from differ-
ent companies is working on upstreaming Multipath TCP
to the Linux kernel. This group has already published vari-
ous patch sets, with some code only relevant to MPTCP but
other patches being of benefit to other parts of the network
subsystem.

2.1 Guidelines

The community group has a set of guidelines for the design
and implementation of MPTCP in the Linux kernel. First,

it is critical to maintain the performance and reliability of
the TCP code. MPTCP is built on top of TCP and involves
a limited number of semantic changes to TCP, but can be
built in such a way that regular TCP continues to operate as
it does today.

Second, applications that use TCP today will continue to
use TCP by default even after MPTCP is upstream. Multi-
path TCP will be "opt-in", requiring programs to explicitly
request multipath connections for each socket.

Finally, the specifications for MPTCP describe both re-
quired and optional features, which allows us to initially
target a limited feature set that will interoperate with other
MPTCP peers. This will keep the initial patch set size from
becoming unwieldy and allow us to more thoroughly test
the first batch of features.

2.2 Protocol compliance

Multipath TCP is defined in RFC 6824 [3] as an Experimen-
tal version while a new Standard version is on its way to be
published soon [17]. The relative complexity of the proto-
col stems from the need to have MPTCP packets look like
normal TCP on the wire in order to pass through the vari-
ous middleboxes present on today’s Internet.

What to support? Like any protocol some behaviors are
mandatory (MUST) and some are not (SHOULD). It is not
necessary to wait for support of all features before propos-
ing MPTCP upstream. Not even all mandatory features
need to be present. Indeed, the protocol has some use-
ful escapes in case some features are not supported. The
most common technique is to fallback to TCP. Using this
approach, certain features can be developed later, e.g.

¢ The DSS checksum is an optional field in the DSS MPTCP
option. This feature is useful to detect corruption in
the MPTCP option space and is negotiated at connection
time. In controlled environments, this CPU-costly fea-
ture is not required.

* Only the client or server side could be supported initially.

¢ Even if MPTCP sits on top of the IP layer, some code paths
for IPv4 and IPv6 can be different. If an MPTCP request
arrives in an IPv6 packet, the server does not have to re-
ply that MPTCP is supported for this connection if IPv6
is not supported with Multipath TCP in the first place.
Instead, the server can reply that it does not support
MPTCP simply by not adding an MPTCP option in the
SYN-ACK.

Another way to add MPTCP to the upstream Linux kernel
with a minimal number of bugs is to forcus on clarity and
readability over very high optimization. This is not to say
that things like memory usage and CPU efficiency should
be ignored, instead it is a recognition that it is appropriate
for MPTCP to meet the expectations of normal kernel code
but not necessarily have the same attention to fine-tuned
clock cycle counts and data structure cache line tweaks that
TCP has gained from years of measurement and incremen-
tal improvement.



Which version to support? The upstreaming commu-
nity’s current intent is to implement the MPTCP v1 proto-
col from RFC 6824bis [17] as described in section 1.4. This
will simplify the code since there will be no need to handle
both the experimental v0 protocol and the standardized v1.
There is a tradeoff in terms of interoperability, as all other
public MPTCP stacks deployed today only support v0. The
changes between the two standards were made after see-
ing where v0 needed improvement when used in produc-
tion, and once the final standard is published v1 deploy-
ments should take over as the experimental protocol is de-
emphasized. Using only the final v1 standard in the up-
stream Linux kernel will also help obsolete the experimen-
tal protocol faster.

2.3 Interfaces with userspace

As mentioned in section 2.1, Multipath TCP will be "opt-
in". Some other aspects of MPTCP will also be under con-
trol of the userspace applications, which will therefore re-
quire a way to interact with it.

Defining a new internal IP protocolnumber When creat-
ing a socket, programs will need to explicitly request multi-
path connections by using the TPPROTO_MP TCP protocol
number:

socket (AF_INET, SOCK_STREAM, IPPROTO_MPTCP);

The ITPPROTO_MP TCP protocol number will not be visi-
ble on the wire. Currently; it is set to the value:

IPPROTO_TCP | 0x100

Only 8 bits are available in the IP header to identify
the next level protocol. The protocol number is mostly
plumbed through the kernel as an int, so it works to de-
fine a 16-bit protocol number for use in the socket () call.
This keeps TPPROTO_MPTCP out of the JANA-managed
8-bit range of values, and choosing a value near today’s
IPPROTO_MAX minimizes impact on the few arrays sized
using that value.

Socket options setsockopt () and getsockopt ()
system calls are another aspect of the userspace API for
sockets. Ultimately, applications will be able to control
Multipath TCP connections as they already do with TCP.
Many options continue to make sense for MPTCP but some
would have limited scope:

e only for the subflows: SO_MARK, TCP_CONGESTION,
etc.

e others only for the global MPTCP connection:
TCP_NODELAY, SO_LINGER, etc.

¢ and others that can be valid for both: some users would
prefer to use SO_KEEPALIVE for the whole MPTCP con-
nection, others for each subflow individually.

For the moment, options can be set and retrieved only
when no subflow has been created, allowing us more time
to settle on an API. More details are available in Section 3.6.

Information exposed in procfs /proc has been tra-
ditionally used to expose information from the kernel
space to the user space. sock_diag(7) is now the
preferred mechanism for sharing information about sock-
ets. Given the tight link between MPTCP and TCB it
might be necessary to expose certain data like TCP does
in /proc/net/tcp, but nothing is planned in this area.
To ease debugging, MPTCP counters will be added in
/proc/net/netstat. More details are given in Sec-
tion 2.6.

Regarding /proc/sys, some behaviors can be changed
via sysctl. These parameters will affect all connections
in a network namespace. For the moment, it is possible to
control the creation of new MPTCP sockets per namespace.
The sysctlis set to 0 by default to maximize security, reject-
ing the creation of MPTCP sockets. This leaves more time
for the community to test and inspect the code for security
issues.

2.4 TCP features

Not every TCP feature will be usable in combination with
MPTCP at first. System defaults will be used for TCP times-
tamps and congestion control. Features that change con-
nection time behavior or use a significant amount of option
space, like TCP Fast Open, are not planned to be supported
initially.

The present RFC patch set supports IPv4. IPv6 is crictical
to have early in the upstream life of MPTCP but the com-
munity is soliciting feedback about adding IPv6 soon after
an initial MPTCP merge to simplify the initial code.

2.5 Server use case

One common way Multipath TCP is used is in a traditional
client/server model, where the server has an internet-
accessible network interface and numerous clients initiate
connections to the server. By focusing on the server func-
tionality in the initial upstreaming patch set, the scope of
kernel changes can be limited while still serving a broad
set of users and creating a base for building further MPTCP
client, proxy, or peering features.

In this server use case, the client is responsible for send-
ing MP_JOIN requests in order to add subflows to the
MPTCP connection. This means the initial kernel code
does not have to track interface availability or have con-
figurable policies for subflow establishment. For a server
it is sufficient to have a limit on the number of open sub-
flows, and if a peer tries to go beyond the limit, the addi-
tional TCP subflow can be immediately closed. This can
have a straightforward implementation within the kernel
without requiring any interaction with userspace or other
kernel subsystems. In addition, since the client can cre-
ate subflows from its various network interfaces to a single
internet-accessible server IP address, it is not necessary for
a server to announce addresses with an ADD_ ADDR signal.

Many applications can also be served with a simple
transmit packet scheduler. In MPTCP, a scheduler is re-
sponsible for choosing one or more subflows to use to
transmit each segment of data. What is proposed by
the community is a simple, server-oriented scheduler that



would transmit on the non-backup subflow that most re-
cently received data from the peer. If only backup subflows
are available it would use the subflow that most recently re-
ceived data.

2.6 Diagnostics and Tests

The kernel self tests for MPTCP currently create multiple
namespaces and veth interfaces, which are then used in
several configurations. Coverage includes MPTCP/MPTCP,
MPTCP/TCP, and TCP/MPTCP connections, packet loss, re-
ordering, and variations in routing.

Features that are useful for MPTCP development, and
are therefore useful to implement early, are SNMP counters
for tracking MPTCP behavior and diag interface extensions
that give visibility into subflow sockets.

A background project is in progress to add MPTCP sup-
port to Packetdrill [21] in order to help test the upstream
MPTCP code as it is created. Like the MPTCP out-of-tree
kernel [1], an out-of-tree Packetdrill project was initiated in
2013 to add MPTCP support [22]. Also like the MPTCP out-
of-tree kernel, this project cannot be upstreamed as-is. Itis
based on an old version of Packetdrill and the architectural
choices do not fit upstream expectations.

2.7 Phasing in MPTCP

As Multipath TCP code is introduced, it makes sense to be
careful about new code that has not yet had time in the wild
to be exposed to hostile traffic, misuse, or a wide variety of
systems and configurations. CONFIG_MPTCP will default
to N, as is customary for new features. Linux distributions
may choose to enable the feature to allow use of the proto-
col and discovery of any issues. A further option for phasing
in MPTCP is to require CAP_NET_ADMIN to set a sysctl to
allow applications in the namespace to create MPTCP sock-
ets, as described in section 2.3. This would make MPTCP
broadly available in kernel binaries while still making sure
users are opting in to the new functionality.

2.8 Summary of TCP changes

While implementing the features above, as much code as
possible has been isolated in net /mptcp/. An MPTCP
socket is a new socket type, with code that is indepen-
dent from TCP. This MPTCP socket creates and manages
in-kernel TCP sockets that do share code with TCP and
use ULP to customize socket behavior. Even with as much
MPTCP-specific code as possible isolated in the MPTCP
socket and its ULP functions, a few targeted changes have
been needed in the TCP code:

ULP In order to clone alistening socket while using ULP, a
hook has been added for ULP to set icsk_ulp_data im-
mediately after cloning. Without this modification, under
some conditions the clone is deleted early and corrupts the
listener’s ULP state.

TCP functions exported MPTCP needs low-level access
to tcp_push(), tcp_send_mss(), and struct
tcp_request_sock_ops.

TCP coalesce/collapse SKBs with MPTCP extensions can’t
be coalesced or collapsed because per-SKB extension data
would be lost. Additional checks in the code verify that the
MPTCP SKB extension is not used before coalescing or col-
lapsing SKBs.

TCP option parsing When parsing TCP options, there’s an
additional switch case to handle the MPTCP option.

TCP option writing The option header writing code will
write the MPTCP option when needed. When MPTCP
needs option space, it takes priority over SACK when allo-
cating space in the TCP option field.

MPTCP socket flag struct tcp_sock and struct
tcp_request_sock gain an is_mptcp bit each for
tracking whether the socket is an MPTCP subflow.

TCP minisocks One additional if statement to handle
subflow connections differently in t cp_check_req()

Received SKB handling Call out to MPTCP code from
tcp_data_queue () to attach the MPTCP SKB extension
and process MPTCP options on ACK packets before they are
freed.

Additional structure members for receive options
struct tcp_options_received has grown to hold
MPTCP option values after they are parsed from the header.
This can utilize some unions to make more efficient use of
memory.

Coupled Receive window Receive window sharing be-
tween subflows has not been implemented yet. This is re-
quired by the RFC as described in Section 1.3 and changes
to TCP receive window code will be needed in order to send
the correct window value.

2.9 Changes already upstreamed

Some changes to support MPTCP also benefit other parts
of the net subsystem, and are good candidates for merging
before MPTCP.

SKB Extensions The SKB Extensions feature has already
been merged to add less-frequently used extended infor-
mation to the sk_buf f structure [19]. This uses a pointer
and some flags to manage an extra block of storage and has
already helped shrink the sk_buff structure by remov-
ing two pointers. SKB Extensions are used by MPTCP to
store information to be read from or written to a TCP op-
tion associated with the data payload. More specifically, it
is needed to map logical MPTCP sequence numbers to the
TCP sequence numbers used by individual subflows. When
asocket is using MPTCP this DSS mapping is read from TCP
option space on receive, and written to TCP option space
of transmitted packets. Regular TCP skbs do not change in
size when MPTCP is configured or in use on other sockets.

TCP ULP diagnostic The TCP ULP framework has been
extended [20] to allow userspace tools like ss to retrieve
some information. Today this is used by kTLS [16] to ex-
pose the protocol version and the cipher in use.



3 Advanced Features Roadmap

Once the initial patchset described in section 2 is reviewed,
revised, and merged, the community group will focus on
more advanced features. Here is a list of features that the
MPTCP upstreaming community has planned for. Other
good ideas are certain to arise in the future, and will be pri-
oritized as work continues.

3.1 Userspace path manager

The MPTCP specification describes how two peers share in-
formation about the IP addresses and ports they have avail-
able for additional subflow connections. The peers are al-
lowed full flexibility in determining how many subflows are
created and which TCP endpoints are involved. The com-
ponent that handles subflows creation and acceptance for
an existing MPTCP connection is known as a "path man-
ager".

One MPTCP peer can inform the other of additional IP
addresses (and, optionally, port numbers) to connect to,
using the ADD_ADDR TCP option subtype. It can cancel
an advertised address using REMOVE_ADDR. In either case,
the information is provided to the configured path manager
so it can be used in combination with local policy to initiate
subflow connections to the peer. Once an MPTCP connec-
tion is made, either peer may initiate a new subflow using
the MP__JOIN option subtype.

In practice, many MPTCP connections involve a server
with one or more internet-accessible IP addresses and a
client. The server will likely handle a large number of in-
coming connections to one IP address, while the client will
make outgoing connections, have multiple network inter-
faces, and is likely to be be behind a NAT (network ad-
dress translator) and firewall. This topology lends itself
to implementing the path manager in userspace, since a
client device will be responsible for initiating new subflows
through the NAT/firewall and will have a smaller volume of
userspace/kernel communication than a server.

As the community group is focusing on the server use
case for the initial upstream patch set, a full-featured path
manager will not be included in this patch set. A server can
implement a simple policy such as a configurable limit on
subflows-per-connection without calling out to userspace.
Looking ahead to later features, a generic netlink API for
communication between the kernel and the path manager
has already been defined. This API has been adopted by
the out-of-tree Linux MPTCP kernel [1, 23] and is used
in production [24]. A Multipath TCP userspace Daemon
(mpt cpd) has been open-sourced [25].

mpt cpd has very few dependencies and can run on sys-
tems ranging from embedded devices up to large servers.
There are quite a few network management components in
use on Linux-based platforms, and the community group
envisions mpt cpd as a reference implementation that can
be used as-is or as an example for integration of similar ca-
pabilities in to other open source projects.

3.2 Packet scheduling

An MPTCP scheduler selects the subflow on which to trans-
mit a segment of data. Sending the same segment on only

one subflow makes more efficient use of bandwidth, but
data can be transmitted in parallel on multiple subflows
for redundancy or error recovery. An advanced scheduler
might make decisions based on round trip time, latency,
congestion, throughput, or radio information. Each host
also sends a per-subflow "backup" flag to its peer to in-
dicate that a specific subflow is only to be transmitted on
if no other paths are available. Other MPTCP implemen-
tations have made alternate schedulers available as kernel
modules. Another approach would be to add eBPF-based
schedulers to allow MPTCP transmissions to be tuned for
specific applications without building kernels or kernel
modules. These architectural options are not mutually ex-
clusive: the kernel could have a couple of simple, default
schedulers built in and also have customization available
with eBPE

3.3 Allowing unmodified binaries to use MPTCP

Some users would like to use MPTCP with existing binaries
built for TCP. A kernel that defaulted to using MPTCP for all
TCP sockets would accommodate this need, but might also
add unintended overhead to other connections. In order to
run only certain binaries with MPTCP substituted for TCP,
a cgroup-specific eBPF hook could be introduced to mod-
ify the parameters for the socket () call within a given
cgroup. This is similar to hooks provided for bind () and
connect ().

3.4 Performance optimizations

With a baseline implementation available to a broad user
base, it will work well to gather performance data from the
developers and user community and focus optimization ef-
forts on those important areas.

There will also be opportunities to fine-tune MPTCP-
specific network performance. For example, when multi-
ple subflows are active, then different scheduling choices
for retransmissions may impact throughput in the presence
of errors.

TCP Fast Open also requires special handling to co-exist
with MPTCP. While it is not expected to have this in the ini-
tial feature set, it will be important to add.

3.5 Break-before-make

While a typical MPTCP connection has at least one sub-
flow, it is possible for both peers to keep a connection ac-
tive even if all of the subflows are closed with regular TCP
FINs. The connection can exist in this zero-connection
state for a brief period of time, during which either side
can send MP__JOINSs to re-establish subflows and continue
the MPTCP session. This is known as "break-before-make".
The length of time in this MPTCP-level TIME_WAIT state is
up to the implementation, and may be zero. While the ini-
tial implementation may close the MPTCP socket immedi-
ately in the interest of simplicity, it is expected to add break-
before-make in a later iteration.

3.6 Subflow information and configuration

An MPTCP-aware application may want to make per-
subflow configuration choices as introduced in Section 2.3.



The MPTCP-level socket manages the set of TCP subflow
sockets that it creates, so userspace does not have di-
rect setsockopt () / getsockopt () access for per-
subflow configuration or information retrieval. If set di-
rectly by the application at the subflow level, some options
could also interfere with the operation of MPTCP, by con-
suming too much TCP option space, or by changing buffer-
ing behavior in a way that is not compatible with MPTCP’s
transmit data scheduling. Given those considerations, it is
planned for the MPTCP socket to act as an intermediary for
per-subflow socket options. It can provide an interface for
setting a socket option for a specific subflow, and only allow
access to whitelisted socket options.

3.7 KTLS

Kernel TLS [16] offload would require significant work at
multiple layers to be used with MPTCP, and may not sup-
port some types of hardware acceleration.

While MPTCP sockets are deliberately made to behave
as much like TCP sockets as possible to simplify applica-
tion compatibility, MPTCP and TCP sockets consist of en-
tirely different code. The ULP hooks defined for TCP do not
work with non-TCP sockets, so both a new generic MPTCP
ULP layer and MPTCP-oriented ULP hooks would have to
be added.

kTLS operating in TLS_SW mode appears feasible. On
the transmit side, record framing and encryption could be
performed before handing data off to subflows. This allows
MPTCP to correctly set the sequence numbers in DSS map-
pings. When receiving data, MPTCP would reassemble the
encrypted data stream across all the subflows, which could
then be handed off to the TLS decryption layer.

There are two main challenges with TLS_ HW and MPTCP.
The first is that record framing bytes inserted or removed
by hardware would interfere with MPTCP DSS mappings,
which assume knowledge of TCP sequence numbers. An-
other issue is that the MPTCP data stream is potentially
split across multiple network interfaces, creating problems
with receiving parts of a TLS record on different subflows
and with skipped or repeated TLS records in one specific
subflow.

Given these considerations, the MPTCP upstream com-
munity is interested in feedback on demand for TLS_SW-
only kTLS for MPTCP before spending time on the project.

Conclusion

With time and effort the MPTCP Upstream community
group believes that Multipath TCP can be successfully in-
tegrated with the networking subsystem. Focusing on es-
sential features first will lead to the best feedback from the
wider upstream community, and result in a more maintain-
able and robust MPTCP implementation as work continues
on both TCP and MPTCP.

Linux MPTCP Upstream project

The goal of this community is to add an implementation
of the MPTCP protocol to the upstream Linux kernel. This
project is open to everybody. Discussions happen on a

dedicated mailing list and during weekly meetings on an
opened platform. Please use these addresses and sites to
give feedback and start discussions about this paper and
the MPTCP upstreaming project.

e Website and Wiki: https://github.com/
multipath-tcp/mptcp_net-next/wiki

e Mailing list: https://lists.0l.org/mailman/
listinfo/mptcp

o Git repository: https://github.com/
multipath-tcp/mptcp_net-next

People actively working on this project are, in alphabetical
order:

¢ Paolo ABENI (Red Hat)

e Matthieu BAERTS (Tessares)
e Davide CARATTI (Red Hat)

¢ Peter KRYSTAD (Intel)

¢ Mat MARTINEAU (Intel)

e Ossama OTHMAN (Intel)

¢ Christoph PAASCH (Apple)

¢ Florian WESTPHAL (Red Hat)
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