
IBNBD/IBTRS Upstreaming: 
Action Items

Jack Wang, jinpu.wang@cloud.ionos.com
Danil Kipnis, danil.kipnis@cloud.ionos.com

Contributors: Roman Penyaev, Jack Wang, Fabian Holler, 
Kleber Souza, Danil Kipnis, Swapnil Ingle



IBNBD/IBTRS: Overview
Github
https://github.com/ionos-enterprise/ibnbd

Performance Evaluation
https://dcd.ionos.com/ibnbd-performance-report/

Last patchset
https://lwn.net/Articles/791690/

ibnbd-clt

ibtrs-clt

Client

Block MQ ibnbd-srv

ibtrs-srv

Server

*session

    RDMA network (Multipath)

FileIO/BlockIO

RDMA

/dev/ibnbd0

RDMA

https://github.com/ionos-enterprise/ibnbd
https://dcd.ionos.com/ibnbd-performance-report/
https://lwn.net/Articles/791690/


IBTRS: main features
● Client side server memory management
● Only RDMA writes with immediate
● No registration/unregistration on server side in io path
● Multipath and Failover policies: “Min Inflight”, Round Robin
● One rdma connection per cpu. (Separate cq_vector per connection - allows to 

“pin” IO on client side to a cpu if setting IRQ affinity accordingly)
● Good performance numbers on variety of test systems
● Memory preallocation on server for better performance



IBNBD: main features
● MQ devices on client side
● Block or File IO interface on server side
● Minimal user interface



Production usage and test coverage
Platforms

● AMD Opteron 6xxx/EPYC Naples
● Intel Haswell/Broadwell/Skylake/Cascadelake

Infiniband HCAs

● Mellanox ConnectX2 MT26428
● Mellanox ConnectX3 MT4099
● Mellanox ConnectX4 MT4115
● Mellanox ConnectX5 MT4119



Patchsets
V0 RFC 2017/03/24

V1 Multipath, less code 2018/02/02

V2 RQ removal, FR only, MR invalidation, docs, etc 2018/03/18

V3 Sparse fixes, sysfs changes 2018/06/06

V4 IO prio, CX4/CX5 support, benchmark, bugfixes 2019/06/20

https://lwn.net/Articles/718181/
https://lwn.net/Articles/746342/
https://lwn.net/Articles/755075/
https://lwn.net/Articles/756994/
https://lwn.net/Articles/791690/


Planned next steps
● Rename IBNBD to RNBD (RDMA Network Block Device)
● Process send completions for read path or set retry_cnt to 0. (Lost IB 

Acknowledgements)
● Finish user-space ibnbd-tool
● Test ROCE support



Thank you!
Open questions:

● What’s the right place to put documentation?
● Rename driver to R(dma)NBD?
● New AMD Rome has 256 cpus, but HCA only supports only 128 MSI-X, some are internal 

use?

Backup slides:

● Links
● Changelogs for different patchsets
● Not implemented community requests
● Some performance numbers



Links
● Github https://github.com/ionos-enterprise/ibnbd

● Last patchset https://lwn.net/Articles/791690

● Performance evaluation v4 https://dcd.ionos.com/ibnbd-performance-report/. 
Links to performance results for each version can also be found in the cover 
letters of corresponding patchsets.

● Vault 2017 presentation 
http://events.linuxfoundation.org/sites/events/files/slides/Copy%20of%20IBNB
D-Vault-2017-5.pdf

https://github.com/ionos-enterprise/ibnbd
https://lwn.net/Articles/791690/
https://dcd.ionos.com/ibnbd-performance-report/
http://events.linuxfoundation.org/sites/events/files/slides/Copy%20of%20IBNBD-Vault-2017-5.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Copy%20of%20IBNBD-Vault-2017-5.pdf


Backup: Changelogs (v4, v3)
V4: https://lwn.net/Articles/791690 

● Extend protocol to transport IO 
priorities

● Support Mellanox ConnectX-4/X-5
● Extend sysfs: display access mode 

on server side
● Bug fixes: clean up sysfs folders, fix 

race on deallocation of resources
● Style fixes

V3: https://lwn.net/Articles/756994/

● Sparse fixes:
○ le32 -> le16 conversion
○ pcpu and RCU declaration

○ sysfs: dynamically alloc array of 
sockaddr structures to reduce size of a 
stack frame

● Rename sysfs folder on client and server 
sides to show source and destination 
addresses of the connection, i.e.:   
.../<session-name>/paths/<src@dst>/

● Remove external inclusions from Makefiles.

https://lwn.net/Articles/791690/
https://lwn.net/Articles/756994/


Backup: Changelog v2 (https://lwn.net/Articles/755075/)
● No legacy request IO mode, only MQ is left. (IBNBD)
● No FMR registration, only FR is left.
● Don’t created pd with IB_PD_UNSAFE_GLOBAL_RKEY by default.
● Always register memory on server. Send MRs dma addresses to client.
● Client side (initiator) has `noreg_cnt` module option, which specifies  sg number, from which read IO 

should be registered.  By default 0 is set, i.e. always register memory for read IOs. (IBTRS protocol does 
not require registration for writes, which always go directly to server memory).

● Proper DMA sync with ib_dma_sync_single_for_(cpu|device) calls.
● Do signalled IB_WR_LOCAL_INV.
● Avoid open-coding of string conversion to IPv4/6 sockaddr, inet_pton_with_scope() is used instead.
● Introduced block device namespaces configuration on server side (target) to avoid security gap in not 

trusted environment, when client can map a block device which does not belong to it.  
● README is extended with description of IBTRS and IBNBD protocol,  e.g. how IB IMM field is used to 

acknowledge IO requests or heartbeats.
● IBTRS/IBNBD client and server modules are registered as devices in  the kernel in order to have all 

sysfs configuration entries under  /sys/devices/virtual/ in order not to spoil /sys/kernel directory. 

https://lwn.net/Articles/755075/


Backup: Changelogs (v1, v0)
V1: https://lwn.net/Articles/746342/

● IBTRS: load-balancing and IO 
fail-over using multipath features 
were added.

● Major parts of the code were 
rewritten, simplified and overall 
code size was reduced by a 
quarter.

V0:  https://lwn.net/Articles/718181/

● Initial submission

https://lwn.net/Articles/746342/
https://lwn.net/Articles/718181/


Backup: Not implemented community requests
● Bart Van Assche and Sagi Grimberg suggested to use sbitmap instead of calling find_first_zero_bit()  

and friends.  We found calling pure bit API is more explicit in comparison to sbitmap - there is no 
need in using sbitmap_queue and all the power of wait queues, no benefits in terms of LoC as well.

   

● Roman Penyaev did several attempts to unify approach of wrapping ib_device with ULP device 
structure (e.g. device pool or using ib_client API), as Sagi Grimberg suggested, but it turns out to be 
that none of these approaches bring simplicity, so IBTRS still creates ULP specific device on 
demand and keeps it in the list.

● Sagi Grimberg suggested to extend inet_pton_with_scope() with gid to sockaddr conversion, but 
after IPv6 conversion (gid is compliant  with IPv6) special RDMA magic should be done in order to 
setup IB port space range, which is very specific and does not fit to be some generic library helper. 



Backup: IBTRS - Functionality and applications
● Transceive sg_lists with read/write semantics over RDMA
● Connection establishment, Multipath, Auto-Reconnects

(Potential) Applications:

● Block IO over RDMA (BIO/SCSI/NVME)
● In-Kernel RDMA Transport for CephFS and RBD: RADOS messages
● Distributed Computations (Write a chunk of data to a compute node, receive 

the result of the computation back)
● Distributed Databases (Write for update, read for select)



Backup: null_blk, Write IOPS

● Linux kernel v5.2-rc3
● 40 CPUs Intel Xeon Silver 4114 CPU 

2.20GHz
● Mellanox MT27700 Family 

ConnectX-4 100Gb/s adaptors
● bssplit 

512/20:1k/16:2k/9:4k/12:8k/19:16k/1
0:32k/8:64k/4

● NVMEoF param_inline_data_size 
4096 (default)



Backup: null_blk, Write IOPS

● Linux kernel v5.2-rc7
● 40 CPUs Intel Xeon Silver 4114 CPU 

2.20GHz
● Mellanox MT27700 Family 

ConnectX-4 100Gb/s adaptors
● bssplit 

512/20:1k/16:2k/9:4k/12:8k/19:16k/1
0:32k/8:64k/4

● NVMEoF param_inline_data_size 
16384



Backup: NVMEoF-related questions
● Where do performance differences between IBNBD and NVMEoF come from?


