
Killing the mmap_sem's contention

VMA Locking

Laurent DUFOUR - IBM

Jérôme Glisse – Red Hat

Sept 2019 Linux Plumbers Lisbon

Why?
●Large number
of CPUs

●Massively
threaded
applications

●Bottlenecks

●mmap_sem
●LRU lock

●Too much
usage of the
mmap_sem

●Another big
kernel lock

Sept 2019 Linux Plumbers Lisbon

Process’s Virtual Memory
●Per process MM descriptor (mm_struct)
●Most of the fields of the mm_struct are protected using the mm.mmap_sem
●VMA defines a memory VMM memory area

– Ordered double linked list (mm.mmap)
– Augmented RB tree (mm.mm_rb)

● Allows quick find of a gap (based on size and start node)
●Page table entries (pgd/pud/pmd/pte)

– Protected by mmap_sem (root level) and split pmd locks mechanism.

Sept 2019 Linux Plumbers Lisbon

VMA’s access
●All manipulations are protected through the mmap_sem
●A writer prevents readers
●A reader prevents writers
●Special case, VMA’s growing (stack) is done under the protection of the
page_table_lock and the mmap_sem in read mode.

– commit 4128997b5f0e ("mm: protect against concurrent vma expansion")
●Sometimes, release the mmap_sem, do stuff, take the mmap_sem back and
revalidate the VMA (like in collapse_huge_page())
●Sometimes, downgrade the mmap_sem to read mode to relax the contention

Sept 2019 Linux Plumbers Lisbon

VMA range Locking
●Needs to be done based on the VMA’s
boundaries

– Merging of neighbors VMA
– Splitting of a VMA
– VMA’s growing up or down

●Put the VMA’s range lock within the VMA’s data

Sept 2019 Linux Plumbers Lisbon

VMA’s locking rules
●To prevent dead lock, area must be locked from the
lowest to highest (by convention)
●If 2 areas must be locked, the lowest must be locked
first, the highest may have to be unlocked for this

– Drawback : need to revalidate the highest VMA
– Only mremap() is concerned

Sept 2019 Linux Plumbers Lisbon

VMA’s locking rules cont.
● Locking must be done at VMA's boundaries because locking a part of a VMA doesn't prevent that VMA

to be split or merged.
– the VMA may hold its own lock.

● The locked area may covers multiple VMAs
– the lock must be attached to the VMA

● The locked area may cover part between 2 VMAs
– the lock may cover space between 2 VMAs

● The locked area may be before or after an existing VMA. We must prevent that VMA to grow over our
locked area.
– the lock area may cover a VMA and an area before and or after a VMA.

● The locked area may not cover an existing VMA
– a dummy VMA needs to be inserted to hold the lock.

Sept 2019 Linux Plumbers Lisbon

VMA Lock’s contagion
●Merging a VMA with an adjacent one is a
common operation
●When locking an area, the VMAs adjacent to that
area must be locked too
●There is no need to extend to the VMAs next or
prior to the adjacent one

Sept 2019 Linux Plumbers Lisbon

The unmap case
●The area is locked then the VMAs are detached and
the cleanup is done.
●While the cleanup is in progress the area need to
remain locked to prevent other threads to map again
in this area.
●Need to insert a dummy VMA to hold the lock while
the operation is in progress.

VMA Locking cases
VMA 1 VMA 21 VMA 1 VMA 22 VMA 1 VMA 23

VMA 14 VMA 2 VMA 15 VMA 2 VMA 16 VMA 2

VMA 1 VMA 27 VMA 28 VMA 3 VMA 4VMA 1 VMA 5

VMA 19

VMA 211 VMA 3 VMA 4VMA 1 VMA 5

VMA 2

VMA 2 VMA 111 VMA 2

Sept 2019 Linux Plumbers Lisbon

Without an existing VMA

VMA 1 VMA 2

VMA 1 VMA 2dummy

VMA 1 VMA 2VMA 3

Mapping case

The dummy VMA
is converted in a
regular VMA, or
removed if the
operation is
aborted.

Create a dummy
VMA to hold the
lock.

Sept 2019 Linux Plumbers Lisbon

Without an existing VMA
Unmapping case

VMA 1 VMA 2

VMA 1 VMA 3dummy

VMA 1 VMA 3

VMA 3

Insert a dummy
VMA to hold the
lock.

Sept 2019 Linux Plumbers Lisbon

VMA locking structure

VMA 2 VMA 3 VMA 4VMA 1 VMA 5 VMA 7

VML 1 VML 2

VMA 6 dummy

VML 3

Sept 2019 Linux Plumbers Lisbon

Merging and splitting VMAs
●Merge should only happen on locked VMAs using
the same vm_area_lock structure.

– Just need to remove the link in the removed
VMA and update the lock’s reference count

●When splitting VMAs, the new VMA is inheriting
the lock (reference count ++)

Sept 2019 Linux Plumbers Lisbon

The get_unmapped_area’s case 1/2
●Take care of the unmapped locked areas
●The dummy VMAs are helping here, no need for an additional
processing
●Areas before and after adjacent VMAs are easy to access
through the lock structure attached to the VMA

– Similar to the VMA’s gap
●No changes needed to the existing augmented RB tree’s data
structure

Sept 2019 Linux Plumbers Lisbon

The get_unmapped_area’s case 2/2
●get_unmapped_area() should not fail if there is enough locked unmapped area
●Record the best unmapped but locked area if none is unlocked and wait for it to
be released

– While waiting for this area to be released, the area may have been
mapped by the thread owning the lock.

● A retry is needed in that case
● Not an usual case, meaning concurrent thread’s access to the

same area
●Returned area is locked

Sept 2019 Linux Plumbers Lisbon

Hazards without the mmap_sem
● Device driver or filesystem relying implicitly on

mmap_sem for internal protection
● Buggy userspace program that works out of

pure luck thanks to the mmap_sem
● Kernel core (arch code, huge pages, ...)

Sept 2019 Linux Plumbers Lisbon

Updating VMA locking part 1
● Keep the mmap_sem as is
● Introduce the new locking mechanism

– Core mm
– No concurrency because of the mmap_sem

● Tests are done by deactivating the mmap_sem for
specific processes to avoid impacts of device drivers,
file system, arch code, huges pages...

Sept 2019 Linux Plumbers Lisbon

Updating VMA locking part 2
● Convert

– Arch code
– File system
– Device Drivers
– Huge Pages support

● Then remove the mmap_sem

Sept 2019 Linux Plumbers Lisbon

Questions?

	Diapo 1
	Diapo 2
	Slide3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

