Building socket-aware BPF programs

Joe Stringer
Cilium.io
joe@cilium.io

ABSTRACT

Over the past several years, BPF has steadily become more
powerful in multiple ways: Through building more intelli-
gence into the verifier which allows more complex programs
to be loaded, and through extension of the API such as by
adding new map types and new native BPF function calls.
While BPF has its roots in applying filters at the socket layer,
the ability to introspect the sockets relating to traffic being
filtered has been limited.

To build socket introspection into a BPF helper, the verifier
needs the ability to track the safety of the calls, including
appropriate reference counting upon the underlying socket.
This paper describes extensions to the verifier to perform
tracking of references in a BPF program. This allows BPF
developers to extend the UAPI with functions that allocate
and release resources within the execution lifetime of a BPF
program, and the verifier will validate that the resources are
released exactly once prior to program completion.

Using this new reference tracking ability in the verifier,
we add socket lookup and release function calls to the BPF
API, allowing BPF programs to safely find a socket and build
logic upon the presence or attributes of a socket. This can be
used to conditionally redirect traffic based on the presence of
a listening application, or to implement stateful firewalling
primitives to understand whether traffic for this connection
has been seen before. With this new functionality, BPF pro-
grams can integrate more closely with the networking stack’s
understanding of the traffic transiting the kernel.

KEYWORDS

BPF, firewalls, Linux, networks, packet processing, sockets

INTRODUCTION

The Berkeley Packet Filter [16], introduced in 1992, provided
a model for the implementation of flexible packet filtering by
allowing runtime modification of kernel logic from userspace
applications. BPF quickly became the de facto technology
for monitoring the traffic flow within POSIX systems. Orig-
inally, this was restricted to applying filtering upon sockets
attached to devices and not to implement filtering capabilities
directly for traffic flowing through a system. Subsequent work

Linux Plumbers Conference’l8, Nov 2018, Vancouver, BC, Canada

investigated using BPF as a basis for packet filtering on de-
vices [15], however this design does not appear to have been
integrated into major operating systems until the introduction
of extended BPF into Linux [8].

In recent years, multiple efforts have been made to build
new filtering implementations based upon BPF [2, 3, 14, 19,
21, 22]. Many of these implementations aim to provide the
functionality of a stateful firewall [9] - that is, network policies
may be defined to allow traffic from one network endpoint
to talk to another network endpoint, and to implicitly allow
responses to pass back through the firewall. Many implemen-
tations over the past decade have developed this functionality
in a manner that is agnostic to the locality of the endpoints.
This paper revisits the possibilities for stateful firewalling
when the endpoint socket is co-located with the kernel pro-
viding firewalling functionality, as is the case with container
workloads. This effectively combines the ideas of a BPF-
based firewall [15] with the model of a stateful firewall [9],
operating with an understanding of socket state [12].

This paper is laid out as follows. Firstly, we discuss the
constraints that the BPF verifier places upon BPF programs
and how those constraints translate into requirements on the
implementation of socket lookup helpers in the Linux BPF
API. The implementation of reference tracking functionality
is presented. Secondly, we describe extensions to the BPF
API to provide socket introspection capabilities, taking into
account flexibility and performance. Thirdly, we present some
use cases for the new functionality, including more detail on
the stateful firewall case and an additional usage in handling
management traffic in forwarding devices. Finally, we con-
clude and assess the position of this work.

EXTENDING THE VERIFIER

The BPF verifier must ensure that all BPF programs that are
loaded into the kernel are safe to execute. This necessitates
verification of every path through the program to ensure con-
straint such as that the program will halt, and that any derefer-
encing of pointers is done in a safe and controlled manner. For
accessing socket pointers, this requires validation that mem-
ory accesses are within the bounds of the memory allocated
for the structure, and that no modifications are made to the
socket fields that would cause the core socket handling logic
to get into a bad state. This is provided through extension of
existing functionality which performs bounds verification and
offset conversion for programs operating on CGroups hooks.

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

Additionally, the underlying memory must remain associated
with the socket for the duration of accesses from the BPF
program, which may be guaranteed by taking a reference on
sockets for the duration of their use. The following sections
explain how this is implemented through the introduction of a
new pointer type in the verifier, and through the extension of
the verifier to recognise assembly instructions that represent
reference acquisition and release.

Pointers to Sockets

Earlier work [1] introduced a bpf_sock structure to the
BPF API and implemented bounds and access type checking,
along with offset rewriting for converting the access of socket
attributes from BPF instructions into equivalent accesses of
the underlying kernel types. This work was introduced with
new BPF hook points which provide the socket structure as
the context of the BPF program.

To allow BPF programs to retrieve and access a socket
pointer, the verifier must be made aware of when a register
contains a pointer of this type, and also how to validate pointer
access. The existing verifier logic handles context pointers
in a generic manner via bpf_verifier_ops. The core of
the verifier is not aware of specifice pointer types that are
used as the context for the program, only how to verify the
pointer access for these types. However, the packet event
hook points targeted in this paper already contain a context
pointer of a type that is different from bpf_sock, so some
additional logic was required in the verifier to understand this
pointer type. The patch series associated with this paper in-
troduced a new pointer type specific to sockets, and linked its
validation directly to the aforementioned socket verification
functions without using the verifier operations abstraction.
Write operations into the socket are rejected in the current
implementation. If variations in access and access type into
the socket is desired in future based upon the hook point, then
it may make sense to introduce a similar abstraction for the
socket type.

With the verifier now aware of socket pointer types, this
provides a foundation to associate socket pointers with refer-
ences to kernel resources.

Reference tracking

Sockets in Linux are reference-counted to track usage and
handle memory release. In general to ensure the safety of
socket for the duration of access in BPF programs, this refer-
ence count needs to be incremented when sockets are refer-
enced from BPF programs. Two options were considered for
how to guarantee this: Implicit reference tracking and explicit
reference tracking.

Implicit reference tracking. This calls for the BPF infras-
tructure to handle reference tracking, and to hide this detail

Joe Stringer

from the BPF API. Whenever a socket lookup function is
called, a reference is taken and the socket is added to a refer-
ence list. At the end of the BPF program execution, the core
code could walk this reference list and release each reference.
However, collecting references and releasing them at the end
of the BPF program invocation has the unfortunate overhead
that even the execution of BPF programs that do not make
use of the new socket lookup helpers would need to pay the
cost of checking the list of references to free. When dealing
with sufficiently demanding use cases such as those which
use eXpress Data Path (XDP) [11], even the few instructions
required to implement such a check may have a measurable
impact on performance.

Explicit reference tracking. This calls for reference ac-
quisition and release semantics to be built into the API. If
references must be taken, then requiring BPF program writers
to explicitly handle these references ensures that the program
writer must understand the potential impact this may have
on the operation of the program (including atomic operation
cost), and it also ensures that the cost is only borne by pro-
grams that make use of this feature.

Implementation. Based upon the tradeoffs described above,
explicit reference tracking was chosen. From an implementa-
tion perspective, this requires tracking pointer values through
each conditional path in the program, and rejecting the load of
programs that fail to "balance" resource acquisition (lookup)
with release. This implementation works as follows.

Calls to helper functions which acquire references to re-
sources are annotated in the verifier to associate the acquisi-
tion and release functions. When the instruction that acquires
a resource is processed, a resource identifier is allocated for
this resource. This identifier is kept in a list in the verifier
state, and it is also associated with the register which receives
the resulting resource pointer. When processing a correspond-
ing release helper call, if a parameter to the function contains
a register that is associated with a resource identifier, then the
identifier is removed from the verifier state. If any paths in
the program reach the final (BPF_EXIT) instruction and the
verifier state contains any resource identifier association, then
the program is considered unsafe as it has leaked the resource.

Some instruction calls are restricted while holding a re-
source reference to avoid leaking references, for example the
bpf_tail_call helper function, which would otherwise
leak the pointer reference to a subsequent BPF program.

Runtime protection

The verifier is tasked with ensuring that all BPF program
execution flow is safe to the extent where it interacts with the
BPF APL. In general BPF programs—once verified and trig-
gered by event hooks—will execute from the first instruction

Building socket-aware BPF programs

through the final instruction for a particular path through the
program. Therefore, references to those resources should not
leak if the program has been verified.

One exception to this is when classic BPF LD_ABS or
LD_IND instructions are used in the BPF program. These
instructions were previously used to provide direct packet
access, with the semantics that if the access offset exceeds the
length of the packet, the BPF program would be terminated
prior to reaching the final state. Without mitigation, this could
lead to leaking of references at runtime, even if the instruc-
tions appear to balance acquisition and release at verification
time. Newer BPF APIs provide better alternatives to these
instructions for packet access, so we disallow the use of these
instructions while holding a socket reference.

EXTENDING THE BPF API

To provide an API that implements explicit reference track-
ing, at least two functions are needed to handle referencing
of sockets: A socket lookup function and a socket release
function. This section describes the API considerations for
each of these.

API definition

The following considerations were made for implementing
the lookup helpers. The consideration of each of these items
reflects the definition of the lookup helpers in Listing 1 and
the structure definitions in Listing 2.

e The Linux stack may contain multiple network names-
paces, where the BPF program may operate attached to
a device in one network namespace while the desired
socket may exist in another network namespace.

e BPF programmers may wish to discover sockets that
are not directly related to the BPF program context
(packet, socket, etc).

e Current use cases are focused around UDP and TCP
sockets, however there may be a desire to extend this
in future.

Namespacing. Linux network devices are associated with
a particular network namespace which provides logical net-
work stack separation [4, 5]. Sockets are also inherently asso-
ciated with an application that operates in a particular network
namespace [6]. The simplest path for handling namespacing
from socket lookup handlers operating from a network device
would be to allow BPF programs operating on a device within
a network namespace to only find sockets in the same net-
work namespace. By passing the BPF program context into
the socket lookup helper, the implementation can derive the
source network namespace from this context. Beyond this,
with the growing popularity of containers it may be desirable

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

for a network orchestration tool to make use of socket proper-
ties inside container network namespaces to influence deci-
sions made on packets outside the container—for instance, on
packets being received into a node prior to passing the packet
into the network namespace. By allowing the netns ID to be
specified, this use case can be supported as well.

Tuple definition. A common use case for the socket lookup
functions would call them from a packet context, where
the __sk_buff has the full 5-tuple information available
and easily accessible. One could imagine a simpler helper
function that allows the BPF program writer to provide the

___sk_buff to the helper function, then the helper function

would look up the socket based upon the packet metadata.
This would however limit the potential uses for such a helper.
Two cases that would be more limited with this model are
usage from XDP (which does not inherently parse packets
or collect packet metadata into the context), or if the BPF
program implements a form of network address translation.
From XDP, if the raw xdp_md context is provided to such a
helper, then the helper would need to parse the packet to un-
derstand the 5-tuple. This would duplicate the standard stack
paths which are executed after XDP where the sk_buff
is built, but this information would be subsequently thrown
away upon return of the helper call. Adding to this, if the
program performs network address translation between the
local application and the remote destination, then the local
stack may not contain a socket associated with the tuple that
is directly in the packet. While these cases could be worked
around with a simpler helper, it was deemed more powerful
and generic to allow the BPF program writer to provide the
tuple for lookup.

Extensibility. New kernel APIs that have any scope for ex-
tension should contain a flags argument [13]. For the socket
lookup helpers, a few ideas had been considered as a potential
future alternatives to the existing behaviour. The lookup func-
tions follow the standard socket lookup paths in Linux which
have predetermined methods for selecting a socket when the
application uses SO_REUSEPORT. Some subsequent discus-
sion on the mailinglist proposed allowing BPF program writ-
ers to influence the socket selection mechanism [7].

Result. Another aspect of extensibility is the ability to
lookup sockets which are not TCP or UDP. The initial RFC
of this patch series proposed a single lookup function which
would choose the Layer 4 protocol based upon a field in the
tuple [20], however this would make it more difficult for BPF
program writers to detect the support for different protocol
types at compile time. When a socket type is unsupported,
the initial implementation would return NULL at runtime,
implying that there is no such socket. Only a few Layer 4
socket types exist in the Linux stack today, and the number

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

is not expected to increase drastically, so it was considered
simpler and easier to split out each Layer 4 socket lookup
function into an independent helper call, so that the result
could simply return a socket or NULL and not need to encode
a representation of other error conditions. This simplifies not
only the API, but also the verifier implementation that must
understand the return type of the helper functions.

Optimizations

Multiple optimizations were proposed during development
of this feature to reduce the runtime overhead of using the
socket lookup helpers. Two such optimizations are described
below: Skipping reference counting when unnecessary to save
on atomic instructions, and allowing the use of direct packet
pointers for the tuple.

Avoid reference counting when unnecessary. For some
socket types, such as UDP sockets, or TCP listen sockets,
memory access safety can be achieved with minimal imple-
mentation: The destruction of such sockets is already gov-
erned by standard RCU rules, meaning that while the RCU
lock is held, they can be safely accessed without holding a
reference; Once the RCU grace period is reached, the memory
may be freed and references to the socket are no longer safe
to use. For these socket types, since BPF programs run under
the RCU lock, the properties of these sockets can be accessed
directly without taking a reference on the socket. As such, the
implementation of the socket lookup and release functions
can avoid the atomic reference count increment operation.

The API retains explicit reference tracking to ensure con-
sistency of the API and to allow multiple underlying imple-
mentations to handle reference tracking in a way that is safe
for the implementation. For instance, for TCP sockets that are
not governed by RCU, the networking stack uses reference
counting to manage socket memory instead, so the socket
lookup and release function implementations must take and
release references on the socket, respectively.

Allow lookup using direct packet pointers. The tuple
structure is defined in such a way that if the IPv4 or IPv6
packet is immediately followed by the TCP or UDP header
without IP options in between, then a pointer to the packet
data at the offset of the Layer 3 addresses may be passed to
the lookup function, allowing the implementation to directly
pull the addresses and ports from the packet buffer rather than
requiring the BPF program to first extract these onto the stack
and pass a pointer to the stack copy of the tuple.

Future work

The implementation introduced in the Linux v4.20 release cy-
cle includes support for looking up TCP and UDP sockets for
IPv4 and IPv6 traffic, using the SCHED_CLS, SCHED_ACT

Joe Stringer

and SK_SKB hook points. A proposed patchset extends this
to allow the same helpers to be used from the XDP hook
points [10].

USE CASES

This work was initially motivated by an attempt to re-think
stateful firewalling in the age of container networking, which
is described in further detail below. During the development
process, another use case was identified in the implementation
of forwarding devices such as switches and routers, so more
detail is provided for this use case as well. Additional use
cases are expected to present themselves as BPF developers
become more aware of the new capabilities.

Stateful Firewalling

Stateful firewalling is distinguished from stateless firewalling
in that it provides the ability to associate two directions of a
connection together and apply a filtering policy based upon
the direction of the connection. This commonly involves using
a connection tracker to reconstruct the connection state of
each endpoint of the connection without specific knowledge
from those endpoints [17, 18].

In cases where the kernel is configured as a firewall be-
tween applications that exist in distinct kernel instances run-
ning in the network, this is intuitive. The information that is
needed to perform stateful firewalling is not present on the
kernel instance that needs this information, so to understand
the state of the peers the information must be either shared
from the peers (assuming that the firewall orchestrator has
control over the peer endpoints), or this information must be
reconstructed based upon the packets that are seen on this
intermediate kernel instance. However, in many cases this
model is used when filtering traffic where one peer is co-
located with the kernel stack that performs the firewalling,
which already contains information about the local end of the
connection. In this use case, the connection tracking table ef-
fectively duplicates knowledge that the kernel already creates
and maintains.

Using the socket lookup functions described in this pa-
per, in conjunction with the socket properties including local
Layer 3 and Layer 4 information available in the bpf_sock
(Listing 2), BPF programs can identify the directionality of
connections for packets ingressing or egressing the Linux
stack on a network device. Between this directionality infor-
mation and a network policy provided by a userspace pro-
gram, BPF programs are able to identify locally-sourced or
locally-destined traffic and allow or deny traffic ingressing or
egressing the Linux stack.

Building socket-aware BPF programs

Conditional forwarding of management traffic
in forwarding devices

A common design of devices providing routing and forward-
ing functionality is to place high-bandwidth forwarding el-
ements into a system with a low-bandwidth CPU. In many
cases, the goal of the CPU is to only to handle control traffic
for configuring the forwarding path, which is a fraction of the
traffic handled by the actual forwarding path. Existing imple-
mentations may direct only traffic for a specific IP into the
management CPU, or could redirect all traffic to the manage-
ment CPU and configure DoS filters in XDP so that only legit-
imate traffic is forwarded up the stack. Such implementations
may not provide the degree of restriction on locally destined
traffic that is desired, or may require additional co-ordination
with the socket layer that requires significant orchestration.

Using the upcoming XDP support for socket lookup, early
in the driver level of the Linux stack the traffic could be com-
pared with the socket table and only passed up the stack if the
traffic corresponds to a local application. As this functionality
uses the socket table directly, it is always kept in sync with
the current applications without additional orchestration of
BPF maps. Traffic which is not intended to be handled locally
can then be handled by additional BPF logic programmed in
the XDP hook.

CONCLUSION

Recent trends in the deployment of cloud applications using
container images through orchestrators such as Kubernetes
have inspired a fresh look at the approach used to provide
networking and filtering capabilities in the network. In light
of these, this paper looks at the ability to perform stateful fire-
walling through introspection of local kernel state. This paper
describes the contribution of new BPF verifier functionality
in the Linux kernel to track references to kernel resources
and uses these to provide access to socket attributes from
packet handling hooks. The introduction of reference tracking
logic into the verifier provides useful base infrastructure for
supporting acquire and release semantics for kernel resources
which may prove useful for other helpers in future, and the
socket lookup API makes the packet hooks more powerful to
support use cases ranging from stateful firewalling to handling
management traffic in network devices.

ACKNOWLEDGMENTS

The author would like to acknowledge Alexei Starovoitov,
Daniel Borkmann, Jarno Rajahalme, John Fastabend, Mar-
tin KaFai Lau, Nitin Hande and Thomas Graf for guidance,
review and testing of the patches, and feedback on this paper.

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

REFERENCES

[1] David Ahern. net: Add bpf support for sockets. Linux kernel v4.10,
commit 6102365876003, March 2018.

[2] Cilium Authors. API-aware networking and security.
https://cilium.io.

[3] Gilberto Bertin. XDP in practice: integrating XDP into our DDoS
mitigation pipeline. Netdev Conference 2.1,2017.

[4] Eric W. Biederman. [NET]: Basic network namespace infrastructure.
Linux kernel v2.6.24, commit 5f256becd868, September 2007.

[5] Eric W. Biederman. [NET]: Add a network namespace tag to struct
net_device. Linux kernel v2.6.24, commit 4alc537113cd, September
2007.

[6] Eric W. Biederman. [NET]: Add a network namespace parameter to
struct sock. Linux kernel v2.6.24, commit 07feaebfcc10, September
2007.

[7] Daniel Borkmann. Re: [PATCH bpf-next] bpf: Extend the sk_lookup()
helper to XDP hookpoint. https://www.spinics.net/lists/netdev/
msg529778.html, October 2018.

[8] Jonathan Corbet. Extending
https://lwn.net/Articles/603983/, 2014.

[9] M. G. Gouda and A. X. Liu. A model of stateful firewalls and its
properties. In 2005 International Conference on Dependable Systems
and Networks (DSN’05), pages 128—137, June 2005.

[10] Nitin Hande. [PATCH bpf-next] bpf: Extend the sk_lookup() helper to
XDP hookpoint. https://www.spinics.net/lists/netdev/msg529727 html,
October 2018.

[11] Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
eXpress Data Path: Fast Programmable Packet Processing in the Op-
erating System Kernel. In CONEXT’18: International Conference on
emerging Networking EXperiments and Technologies. ACM Digital
Library, December 2018.

[12] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In Proceedings
of the 7th ACM Conference on Computer and Communications Security,
CCS ’00, pages 190-199, 2000.

[13] Michael Kerrisk. Flags as a system call API design pattern. https:
/Nlwn.net/Articles/585415/, February 2014.

[14] Alexander Kurtz. Application-level firewalling using systemd socket
action and eBPF filters. https://github.com/AlexanderKurtz/alfwrapper.

[15] KurtJ. Lidl, Deborah G. Lidl, and Paul R. Borman. Flexible packet fil-
tering: Providing a rich toolbox. In Proceedings of the BSD Conference
2002 on BSD Conference, BSDC’02, pages 11-11, 2002.

[16] Steven McCanne and Van Jacobson. The BSD packet filter: A new ar-
chitecture for user-level packet capture. In USENIX Winter, volume 46,
1993.

[17] Pablo Neira Ayuso. Netfilter’s Connection Tracking System. LOGIN;,
The USENIX magazine, 31(3):34-39, June 2006.

[18] Justin Pettit and Thomas Graf. Stateful connection tracking and stateful
NAT. In Open vSwitch 2014 Fall Conference, November 2014.

[19] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu, Brenden Blanco,
and Alex Tessmer. Bringing platform harmony to VMware NSX.
SIGOPS Oper. Syst. Rev., 52(1):123-128, August 2018.

[20] Joe Stringer. [RFC bpf-next 07/11] bpf: Add helper to retrieve socket in
BPF. https://www.spinics.net/lists/netdev/msg501166.html, May 2018.

[21] Cheng-Chun Tu, Joe Stringer, and Justin Pettit. Building an Extensible
Open vSwitch Datapath. ACM SIGOPS Operating Systems Review -
Special Topics, 51(1):72-77, 2017.

[22] Huapeng Zhou, Doug Porter, Ryan Tierney, and Nikita Shirokov.
Droplet: DDoS countermeasures powered by BPF + XDP. Netdev
Conference 1.1,2017.

extended BPF.

https://cilium.io
https://www.spinics.net/lists/netdev/msg529778.html
https://www.spinics.net/lists/netdev/msg529778.html
https://www.spinics.net/lists/netdev/msg529727.html
https://lwn.net/Articles/585415/
https://lwn.net/Articles/585415/
https://github.com/AlexanderKurtz/alfwrapper
https://www.spinics.net/lists/netdev/msg501166.html

Linux Plumbers Conference’18, Nov 2018, Vancouver, BC, Canada

Listing 1: BPF API helper functions for socket lookup

struct bpf_sock =
bpf_sk_lookup_tcp(void xctx,

u32 tuple_size ,

struct bpf_sock =
bpf_sk_lookup_udp(void xctx,

u32 tuple_size ,

u32 netns,

u32 netns,

void bpf_sk_release (struct bpf_sock =sk);

struct bpf_sock_tuple =tuple,
u64 flags);

struct bpf_sock_tuple =tuple,
u64 flags);

Listing 2: BPF API structures for socket lookup (Linux v4.20)

struct bpf_sock_tuple {

union {
struct {
__be32 saddr;
__be32 daddr;
__bel6 sport;
__bel6 dport;
} ipv4;
struct {
__be32 saddr[4];
__be32 daddr[4];
__bel6 sport;
__bel6 dport;
} ipv6;
1
}s
struct bpf_sock {
__u32 bound_dev_if;
__u32 family;
__u32 type;
__u32 protocol;
__u32 mark;
__u32 priority;
__u32 src_ip4; /% Allows
x Stored
*/
__u32 src_ip6[4]; /% Allows
* Stored
*/
__u32 src_port; /% Allows
* Stored

*/

1,2,4—byte
in network

1,2,4—byte
in network

read .

byte

read .

byte

4—byte read.

in host

order.

order.

byte order

Joe Stringer

	Abstract
	Keywords
	Introduction
	Extending the Verifier
	Pointers to Sockets
	Reference tracking
	Runtime protection

	Extending the BPF API
	API definition
	Optimizations
	Future work

	Use cases
	Stateful Firewalling
	Conditional forwarding of management traffic in forwarding devices

	Conclusion
	Acknowledgments
	References

