
Scaling Linux Traffic
Shaping with BPF

work by (alphabetically):

Chonggang Li, Craig Gallek, Eddie Hao,
Kevin Athey, Maciej Żenczykowski,
Vlad Dumitrescu, Willem de Bruijn,

Xiaotian Pei, and many others at Google

presented by: Vlad Dumitrescu

Linux Plumbers Conference 2018
BPF Microconference

November 15, 2018
Vancouver, BC, Canada

Outline

1. Context; HTB solution; problems with HTB.

2. BPF to the rescue! And other advantages.

3. Guided, but open discussion on BPF related issues.

Context

[1] Alok K., et al. BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing (doi.org/10.1145/2785956.2787478)

Servers classify, measure, rate limit and remark (QoS) outgoing traffic.

Traffic Control (TC) hierarchy w/ HTB & dsmark qdiscs; u32 and custom filters.

Userland daemon

maintains TC hierarchy, collects statistics, communicates with control system (BwE1)

Classification parameters

dst cluster, src container, QoS, delegated user1 (a custom socket option and skb field)

https://doi.org/10.1145/2785956.2787478
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://man7.org/linux/man-pages/man8/tc-htb.8.html
https://www.tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.adv-qdisc.dsmark.html
http://man7.org/linux/man-pages/man8/tc-u32.8.html

Problems2

● very large TC HTB tree

○ sometimes 25k nodes

○ slow stats collection

○ per packet costs

●

● kernel changes/rollout for new needs

○ custom filters, optimizations

[2] also tackled, for some environments, in: A. Saeed, et. al. Carousel: Scalable Traffic Shaping at End Hosts (doi.org/10.1145/3098822.3098852)

Over time, a lot of traffic (e.g.,
intra-cluster) ended up bypassing this

(custom sock opt & skb flag).

https://doi.org/10.1145/3098822.3098852

● very large TC HTB tree

○ sometimes 25k nodes

○ slow stats collection

○ per packet costs

● the dreaded root qdisc lock

● kernel changes/rollout for new needs

○ custom filters, optimizations

Problems2 htb
classifies on container id

(skb->priority)

classifies on QoS
(extracted from packet)

classifies on dst cluster
(LPM on dst IP)

leaf queue

htb_enqueue

htb

htb

dsmark

qdisc
class

htb
classifies on delegated user1

(custom sock opt & skb field)

rate limit

remarks QoS

[2] also tackled, for some environments, in: A. Saeed, et. al. Carousel: Scalable Traffic Shaping at End Hosts (doi.org/10.1145/3098822.3098852)

Over time, a lot of traffic (e.g.,
intra-cluster) ended up bypassing this

(custom sock opt & skb flag).

https://doi.org/10.1145/3098822.3098852

BPF to the Rescue
Classify

BPF on TC clsact egress. Builds flow key.
cluster (LPM on dst IP), QoS, container (skb field), delegated user (skb field)

Measure
Increment {bytes, packets} for flow key (per-CPU map).

Remark (QoS)
Rules for flow key in BPF hash map. Change skb->tos.

Rate Limit
Set classid or bypass based on rules. Still HTB, but flat.

At least 95% of traffic is not rate limited
 => gets accounted, but bypasses HTB
 => qdisc root lock no longer matters.

BPF to the Rescue
Classify

BPF on TC clsact egress. Builds flow key.
cluster (LPM on dst IP), QoS, container (skb field), delegated user (skb field)

Measure
Increment {bytes, packets} for flow key (per-CPU map).

Remark (QoS)
Rules for flow key in BPF hash map. Change skb->tos.

Rate Limit
Set classid or bypass based on rules. Still HTB, but flat.

At least 95% of traffic is not rate limited
 => gets accounted, but bypasses HTB
 => qdisc root lock no longer matters.

Could be replaced in the future.
We don't need token borrowing.

Only flat space of queues, which
could be lock-free or fine-grained.

htb

clsact
BPF

Stats (PERCPU_HASH)

Remark Rules (HASH)

Rate Limit Rules (HASH)

Cluster Subnets (LPM_TRIE)no root lock

non rate limited
bypasses HTB

BPF map

Custom patch to allow bypass
of root qdisc after clsact.

Other Advantages of BPF
● dynamic socket-level policies

○ congestion control, but also other socket options
○ using TCP-BPF, which runs on TCP socket state transitions (i.e., passive/active established)

● first-packet classification
○ delay in building HTB hierarchy (add/remove/change nodes) as flows appear & rules change
○ with BPF, some rules are always configured, and will apply to the first packet

● faster deployment of business logic changes, bug fixes

● optimization opportunities
○ replace hot paths (e.g., map/trie lookups) with generated BPF instructions

https://www.spinics.net/lists/netdev/msg443170.html

Open Discussion (1/2)
1. complete map dumps from userland

○ 2 syscalls (BPF_MAP_LOOKUP_ELEM, BPF_MAP_GET_NEXT_KEY) per entry
○ for Stats (PERCPU_HASH), we always read all items, every N seconds

2. better Longest Prefix Match trie implementation
○ trie_lookup_elem in top 5 kernel CPU users in our continuous profiling3

3. runtime map resizing controlled by userland
○ Stats PERCPU_HASH map provisioned for worst case

4. limited unit testing capabilities
○ bpf_prog_test_run only allows fake data, not fake skb/__sk_buff

5. bypass root qdisc after clsact egress (via TC_ACT_* return code?)

[3] Gang R., et al. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers (doi.org/10.1109/MM.2010.68)

https://doi.org/10.1109/MM.2010.68

Open Discussion (2/2)
1. memory management for (per-CPU) maps

○ allocation pattern makes the per cpu allocator reach a highly fragmented state
○ sometimes takes a long time (up to 12s) to create the PERCPU_HASH maps at startup

2. performance and profiling
○ always-on CPU usage for each program instance
○ kprobes inside BPF programs

3. hidden Direct Packet Access write overheads
○ verifier decides to always bpf_skb_pull_data if program has DPA writes
○ workarounds: call DPA writing program only when needed; use bpf_skb_store_bytes

4. plumbing a new field to __sk_buff requires kernel changes
○ verifier as a module?
○ or maybe this is why a "Plumbers" conference exists :)

Thank You!

