
Solving Linux File System Pain Points

Steve French
Samba Team & Linux Kernel CIFS VFS maintainer

Principal Software Engineer Azure Storage

Legal Statement

– This work represents the views of the author(s) and does not
necessarily reflect the views of Microsoft Corporation

– Linux is a registered trademark of Linus Torvalds.

– Other company, product, and service names may be trademarks
or service marks of others.

Who am I?

– Steve French smfrench@gmail.com

– Author and maintainer of Linux cifs vfs (for accessing
Samba, Windows and various SMB3/CIFS based NAS
appliances)

– Also wrote initial SMB2 kernel client prototype

– Member of the Samba team, coauthor of SNIA CIFS
Technical Reference,former SNIA CIFS Working Group chair

 (and formerly IBM Linux File System Architect)

– Principal Software Engineer, Azure Storage: Microsoft

mailto:smfrench@gmail.com

Outline

● General Linux File System Status – Linux FS and VFS
Activity

● What are the goals?

● Some Key Pain Points

● Testing

A year ago … and now … kernel
(including kernel file systems) improving

● 14 months ago we had
Linux version 4.11 ie
“Fearless Coyote”

A few days ago ago we got
4.20-rc2 “People’s Front”

Discussions driving some of the FS
development activity ?

● New mount API, new fsinfo API

● Additional security features

● Many of the high priority, evolving storage features are critical:

– Better support for faster storage
● RDMA and low latency ways to access VERY high speed storage (NVMe etc.)
● Faster (and cheaper) network adapters (10Gb→40Gb->100Gb ethernet … and RDMA)
● I/O priority

– Now that statx (extended stat) is in, adding more metadata flags
– Locks, locks and more locks
– Recent changes for dedupe …
– Larger block sizes (block size > page size e.g. in XFS)
– Broadening use of copy offload (e.g. “copy_file_range” syscall, cross fs copy)

● In rsync, cp etc.
– Shift to Cloud (longer latencies, object & file coexisting, stronger sec required)

2018 Linux FS/MM summit (in April)

● Great group of talented developers

Most Active Linux Filesystems this year
(January ie 4.15 to now ie 4.20-rc2)

● 4644 kernel file system changes since 4.15 kernel released, 6.8% of kernel overall (up). FS are important to Linux!

● Kernel is now 17.6 million lines of source code (measured today with sloccount tool)

● 60+ Linux file systems. cifs.ko (cifs/smb3 client) among more active (#4 out of 60 and growing). More activity is good!

● BTRFS 927 changesets (up), most changesets of any fs related compoenent

● VFS (overall fs mapping layer and common functions) 633

● XFS 564 (up)

● F2FS 378

● cifs.ko (CIFS/SMB2/SMB3 client) 344 (up more than 100%! And continuing to increase)

● Has 49,600 lines of kernel code (not counting user space helpers and samba userspace tools)
● NFS client 245 (down)

● NFS server 92 (down). Linux NFS server is MUCH smaller than Samba server (or even CIFS or NFS clients).

● And various other file systems: EXT4 200, Ceph 138, GFS2 123, AFS 118 …

● NB: Samba is as active as all Linux file systems put together (>4000 changesets per year) - broader in scope (by a lot) and also
is user space not kernel. 3.4Million Lines of Code. 100x larger than the NFS server in Linux!

POSIX != Linux
(Linux API is much bigger)

Linux is BIG

 Currently 293 Linux syscalls!
 vs
 About 100 POSIX API calls

What are the goals?

● Make Linux File Systems fastest, most stable way to
access general purpose data

● Make it easy, predictable for app writers to achieve great
performance, security, integrity for their data

What about presentations at this
conference that relate to fs … ?

● When eBPF meets FUSE: Improving Performance of User File
Systems

● Zero copy UserMode File System

● Filename encoding and case-insensitive filesystems

● Untrusted File Systems

● Shiftfs

● FS checkpointing

● Optimizing network i/o in VMs for cluster/network fs

– Virtio
● And more ...

Samba’s favorite complaints

● Poll of a few Samba team guys (e.g Jeremy Allison of Google,
Samba server, confirmed today ...)

● Data can’t be migrated to Linux (not just Samba) without a
richer ACL/security model

– Whether “RichACLs” or ZFS ACLs or NFSv4.1 ACLs or
SMB/NTFS ACLs or … (they are all ‘close enough’)

● Can’t get around need for Deny ACEs in migration and
key workloads (Linux is only major OS that lacks this)

● O_NOFOLLOW semantics almost useless … need a new
“O_NO_FULL_PATH_FOLLOW” for the whole path not just the
last component (security hole otherwise)

The Copy Problem

● Copy offload (server side copy, cluster copy)

● Copy parallelization

– And pegging the CPU on one processor …
● Cross mount copy (when the same fs)

● Option for limiting extending writes

● Better sparse file support in tools (not just in cp)

● Larger i/o sizes (NFS defaults to 1MB and SMB3 defaults
to even larger – 4MB now, and can go to 8MB)

The RichACL problem

● ‘POSIX ACLs’ (used by some Linux fs) don’t have deny
ACEs, mode bits are worse

● DENY Access Control Entries matter for real workloads,
real government, regulatory, customer requirements

● ‘Claims Based’ ACLs can often be emulated but Apache
(and also Windows flie systems) support this, which can
also be helpful for modern privacy/security requirements

The statx and extra metadata problem ..

● Not just for the cloud ...

Theme: Let the File system do more if
it knows more ...

● Sometimes the file system can do operations more
efficiently than the VFS since it has access to more
information (not just “copy from mount a to b”)

● Too much layering (virtual block layers) can also hurt file
system’s ability to do its job by abstracting information that
the FS much know

Exciting year!!

● LOTS of new features

...

Testing … testing … testing

● See README in xfstest git tree

● xfstesting page for individual file systems e.g.in cifs wiki
https://wiki.samba.org/index.php/Xfstesting-cifs

● Easy to setup, exclude file for slow tests or failing ones

● XFSTEST status update

– Bugzillas
– Features in progress
– Automating improvements (see e.g. how ext4 automates

xfstest)
● Add more testcases to the FS layer (xfstests)!

Thank you for your time

● Future is very bright!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

