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In the beginning

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.



The systems defined as a set of tasks  
Each task is a set of variables that defines its timing behavior, e.g.,

Then, they try to define/develop a scheduler in such way that,
for each task i in   :

the response time of     < Di
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In theory...
τ

τi={P ,C , D ,B , J }

τ
τi
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For task level fixed priority scheduler:

Ri=W i+J i

W i=C i+Bi+∑ j∈hp( i) ⌈ W i+J j

P j
⌉C j

∀ task i∈τ :

is schedulable⇔∀ task i∈τ∣R i<Di
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For Early Deadline First

U i=
C i

P i

is schedulable⇔∀ task i∈τ∣∑U i<1

∀ task i∈τ :



The development of a new scheduler is 
done with mathematical reasoning.



- The system is fully preemptive;
- Tasks are completely independent;
- Operations are atomic;
- There is no overhead.
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But generally, they relax in the task model



We can’t say that these assumptions are 
not realistic...



But, what is our reality?



- The system is not fully preemptive;
- Tasks are not completely independent;
- Operations are not atomic;
- There is overhead.
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Our reality



Math side: But talk is cheap…



Dev side: Read the code, it is there, boy!



Show me the math!

Math side: Talk is cheap...



● Inside our mind, we have an implicit task model:
○ We know preemption causes latency

○ We know the difference in the behavior of a mutex and the spin lock

○ We know we have interrupts

● But, how do we explain these things without missing details?

○ Natural language is ambiguous…

○ e.g., preemption disabled is bad for latency, right?
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Towards a Linux task model



● We need an explicit task model
○ Using a formal language/method

○ Abstracting the code

○ Without losing contact with the terms that we use in practice.
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Towards a Linux task model



● Linux developers use tracing features to analyze the system:
○ They see tracing events that cause states change of the system.

● Discrete Event Systems (DES) methods also use these concepts:
○ events, trace and states...

● DES is can be used in the formalization of system.
● So, why not try to describe Linux using a DES method?
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Toward a Linux task model



● Automata is a method to model Discrete Event Systems (DES)
● Formally, an automaton is defined as:

○ G = {X , E, f , x0 , Xm }, where:

■ X = finite set of states;

■ E = finite set of events;

■ F is the transition function = (X x E) → X;

■ x0  = Initial state;

■ Xm = set of final states.

● The language - or traces - generated/recognized by G is the L(G).
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Background
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Graphical format



● Rather than modeling the system as a single automaton, the modular 
approach uses generators and specifications.
○ Generators:

■ Independent subsystems models

■ Generates all chain of events (without control)

○ Specification:

■ Control/synchronization rules of two or more subsystems

■ Blocks some events

● The parallel composition operation synchronizes them.
○ The result is an automaton with all chain of events possible in a 

controlled system.
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Modeling of complex systems



Example of models
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Generators of events
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Generators of events



Eita, boia,
This is boring…



Specifications: Sufficiency conditions



Specifications: Sufficiency conditions



Specifications: Sufficiency conditions



Specifications: Necessary condition
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Synchronizing the modules, we have the model
The complete model has:

- 12 generators + 33 specifications
- 34 different events
- > 10000 states!

The benefit of this:
- Validating the model against the kernel, and vice-versa, is O(1)
- One kernel event generates one automata transition 



Nice! But what do we do with this 
information?
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What can we do with the model
From academic side:

- Understand the kernel dynamics.
- Develop of a theoretical system model for Linux.
- And… rework or develop new algorithms for Linux.

From development side:
- A rutime model checker for the kernel - think of a lockdep for 

preemption.
- A new set of metrics - isolated metrics.
- Static code analysis based in the assumptions - think of using 

coccinelle to find PREEMPT_RT bugs.



Questions?
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