
Mind the gap:
between real-time Linux and real-time theory

Part I

Daniel Bristot de Oliveira

2

In the beginning

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.

The systems defined as a set of tasks
Each task is a set of variables that defines its timing behavior, e.g.,

Then, they try to define/develop a scheduler in such way that,
for each task i in :

the response time of < Di

3

In theory...
τ

τi={P ,C , D ,B , J }

τ
τi

4

For task level fixed priority scheduler:

Ri=W i+J i

W i=C i+Bi+∑ j∈hp(i) ⌈ W i+J j

P j
⌉C j

∀ task i∈τ :

is schedulable⇔∀ task i∈τ∣R i<Di

5

For Early Deadline First

U i=
C i

P i

is schedulable⇔∀ task i∈τ∣∑U i<1

∀ task i∈τ :

The development of a new scheduler is
done with mathematical reasoning.

- The system is fully preemptive;
- Tasks are completely independent;
- Operations are atomic;
- There is no overhead.

7

But generally, they relax in the task model

We can’t say that these assumptions are
not realistic...

But, what is our reality?

- The system is not fully preemptive;
- Tasks are not completely independent;
- Operations are not atomic;
- There is overhead.

10

Our reality

Math side: But talk is cheap…

Dev side: Read the code, it is there, boy!

Show me the math!

Math side: Talk is cheap...

● Inside our mind, we have an implicit task model:
○ We know preemption causes latency

○ We know the difference in the behavior of a mutex and the spin lock

○ We know we have interrupts

● But, how do we explain these things without missing details?

○ Natural language is ambiguous…

○ e.g., preemption disabled is bad for latency, right?

14

Towards a Linux task model

● We need an explicit task model
○ Using a formal language/method

○ Abstracting the code

○ Without losing contact with the terms that we use in practice.

15

Towards a Linux task model

● Linux developers use tracing features to analyze the system:
○ They see tracing events that cause states change of the system.

● Discrete Event Systems (DES) methods also use these concepts:
○ events, trace and states...

● DES is can be used in the formalization of system.
● So, why not try to describe Linux using a DES method?

16

Toward a Linux task model

● Automata is a method to model Discrete Event Systems (DES)
● Formally, an automaton is defined as:

○ G = {X , E, f , x0 , Xm }, where:

■ X = finite set of states;

■ E = finite set of events;

■ F is the transition function = (X x E) → X;

■ x0 = Initial state;

■ Xm = set of final states.

● The language - or traces - generated/recognized by G is the L(G).

17

Background

18

Graphical format

● Rather than modeling the system as a single automaton, the modular
approach uses generators and specifications.
○ Generators:

■ Independent subsystems models

■ Generates all chain of events (without control)

○ Specification:

■ Control/synchronization rules of two or more subsystems

■ Blocks some events

● The parallel composition operation synchronizes them.
○ The result is an automaton with all chain of events possible in a

controlled system.

19

Modeling of complex systems

Example of models

21

Generators of events

22

Generators of events

Eita, boia,
This is boring…

Specifications: Sufficiency conditions

Specifications: Sufficiency conditions

Specifications: Sufficiency conditions

Specifications: Necessary condition

28

Synchronizing the modules, we have the model
The complete model has:

- 12 generators + 33 specifications
- 34 different events
- > 10000 states!

The benefit of this:
- Validating the model against the kernel, and vice-versa, is O(1)
- One kernel event generates one automata transition

Nice! But what do we do with this
information?

30

What can we do with the model
From academic side:

- Understand the kernel dynamics.
- Develop of a theoretical system model for Linux.
- And… rework or develop new algorithms for Linux.

From development side:
- A rutime model checker for the kernel - think of a lockdep for

preemption.
- A new set of metrics - isolated metrics.
- Static code analysis based in the assumptions - think of using

coccinelle to find PREEMPT_RT bugs.

Questions?

	Slide 1
	What is next?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Real-time Linux analysis
	Slide 15
	Slide 16
	Background
	Graphical format
	Modeling of complex systems
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

