Agenda

Life of Android device kernels
“The Android Problem(s)”
... and their solutions.
Android Kernel Development Process
Project Treble & Kernel
Questions
Life of Android device kernels

- Stable Long Term Support
- Android Common
- SoC Kernel
- Device Kernel

Device Release → Device Update → Device Update → Device Update
<table>
<thead>
<tr>
<th>The Android Problem(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping older kernels</td>
</tr>
<tr>
<td>Manage multiple kernel versions</td>
</tr>
<tr>
<td>Slower (non-existent) kernel updates</td>
</tr>
<tr>
<td>Lack of automated continuous testing of latest kernels with Android.</td>
</tr>
</tbody>
</table>
Problem #1 & 2: Older & Multiple kernels

- Android Oreo: 3.18, 4.4 & 4.9
- Android Pie: 4.4.107+, **4.9.84+**, 4.14.42+
 - ~2 year delay.
- Android platform MUST continue work on following kernel versions.
 - 3.18, 4.4, **4.9**, 4.14, 4.19
Managed with testing

- **LKFT** tests of LTS, rc, android common...
- **kernelci** testing of android common kernels
- LTP improvements: syscall coverage, fixing breakage
- Pre-submit testing on Android kernels using “Cuttlefish”
- Testing from SoC vendors.
Problem #3: Slower (non-existent) kernel updates

- Major/minor kernel upgrade is still an issue with carriers and vendors alike.
- Android Oreo: Minimum kernel version defined and required.
- Android Pie: Minimum kernel version with LTS defined and required.
- Plan to continue moving the needle.
- Include LTS releases instead of Patches in security bulletin
 - “A bug is a bug is a bug”.
Problem #4 & 5: Lack of testing targets for Android

- None of the Android devices run mainline kernels.
- Problem for both Android & kernel developers.
- Large amounts of out-of-tree code.
 - Android common
 - Hardware support
Problem #6: Millions of lines of out-of-tree code

- Android common kernel
 - Many patches have been merged upstream or are now obsolete for v4.19
 - Android v4.19 kernel has about ~30 patches.
 - 83 files changed, 6474 insertions(+) and 173 deletions(-)
 - Numerous changes are dropped in v4.19 as a result of deprecation, user space alternatives and/or upstreaming.
 - Work yet to be upstreamed:
 - Binder priority inheritance, EAS, SDCardFS etc.
Problem #6: ...

- Upstreaming out-of-tree hardware specific code...

(ツ)/\n
(.. but more on this later)
Android kernel development Process updates

- Upstream first!

- Proactively report vulnerabilities and work w/ Upstream.

- Mainline, -next, -stable testing on ARM hardware.
 - Same done with Cuttlefish on emulated hardware.
Project Treble & Kernel

- **Vendor Interface (VINTF)**
 - Collection of versioned HAL interfaces
 - **Linux Kernel**
- **Generic System Image (GSI)**

Framework Build
Part of the Android build that is hardware-agnostic

VINTF Implementation
Part of the Android build that is aware of the hardware and implements the corresponding Vendor Interface (VINTF)

Android Framework

HAL Interface

Applications

Vendor Implementation of HAL Interface

Linux Kernel

Hardware Components
Platform vs Vendor Split

Vendor Implementation of HAL Interface
Make a “Generic” kernel possible for Android

GSI + GKI

Vendor Implementation of HAL Interface

Linux Kernel Modules for SoCs / Peripherals
How can we get there ...

- Kernel symbol namespaces
- Single compiler for Android
 - Both userspace and kernel.
- In-kernel ABI monitoring
More updates in Android MC

- Userspace low-memory killer
- Userdata checkpoints
- De-staging: Ashmem, Ion.
- DRM/KMS
- Updates on Android’s use of Device Tree.
- LVM, Android and resizable partitions.
Questions?