RISC-V is currently focused on the embedded market. However, RISC-V already has a design of a superior vector unit that could make the architecture very relevant for High Performance Computing because it would provide superior floating point performance. There are other issues though that would need to be addressed in the RISC-V architecture like the ability to handle large memory sizes properly, scalable locking and scalable I/O. This is an overview of things that may have to be addressed to make RISC-V competitive in the HPC area. These features overlap to some extend to what is also needed to enable cloud computing and we are also briefly going into how that could be accomplished. Ideally, (in the far and distant future) I would like to have RISC-V cover all areas of computing so that a single instruction set can be used for all use cases in our company so that our support overhead can be drastically reduced since we would not have to deal with multiple architectures for different use cases anymore.

I agree to abide by the anti-harassment policy

Presenter: LAMETER, Christopher
Session Classification: RISC-V MC