Embedded Thermal Use Cases (how to handle them?)

Amit Kucheria

13th Nov 2018
Linux Plumbers conference
Typical SoC

System

CPU
- big CPUs: CPU 0, CPU 1, CPU 2, CPU 3
- LITTLE CPUs: CPU 4, CPU 5, CPU 6, CPU 7

GPU

Peripherals
- Battery
- Display
- Modem
- Camera
Capturing hotspots

- **Lots** of sensors (20+ in some mobile SoCs)
- Need to capture hotspots quickly and mitigate
 - 30-40°C rise in under 10ms
 - Even within a CPU cluster, >5°C difference between hot CPU and ambient cluster temperature
- But some mitigation actions apply to a group
 - E.g. cpufreq acts on the cluster
 - Hence need for aggregation
Modeling an Octacore CPU with 8 sensors

Option 1: One thermal zone per sensor
- No way to track cluster temperature trend
- If the info was available, possibility to do smarter scheduling, idle injection

Option 2: 8 sensors in single thermal zone using coefficients for a linear equation
- Not possible today, needs fixing first (of-thermal.c)
- Q: Will end up throttling all CPUs, how to handle hotspots?

Proposal: model the hierarchical topology of SoC
- Hierarchical thermal zones (per-CPU zone, per-cluster aggregation)
- Possibility of different governors at each level
- Extend to model other devices on SoC
- Q: What would DT/ACPI representation look like?
Winter is coming...

- No way to ensure lower thermal threshold
 - Needed in very cold environments, to ensure circuit closures
 - Downstream solution: a “heating” governor

- Potential solutions:
 - Multiple governors per zone (downstream)
 - One for <0°C, another for >0°C
 - Regulator “cooling” devices (heating) to raise floor voltages
 - Range-based governor (more elegant?)
Other downstream hacks for mobile

- Sensors spanning thermal zones (patches submitted for review)
 - Single sensor between two hotspots needing different governors
- Multiple governors associated with a thermal zone
 - E.g. userspace and step-wise, so you could directly influence the application
 - E.g. one for hot and one for cold temperatures
- Corner cases:
 - Initialise thermal framework earlier?
 - Problem: Core at fs_initcall() but several cpufreq drivers at late_initcall() or device_initcall()
 - Booting faster
 - Allow different governors for each thermal zone at boot
 - Patch rejected to keep in line with other frameworks that don’t allow governors to be specified in DT
In summary

- Ultimate goal is to avoid throttling for as long as possible
 - Power allocator governor can help in smoothing out the sawtooth
 - Smarter scheduling + idle injection should help
- More flexible sensor/thermal zone topology desirable
 - Multiple sensors within a thermal zone
 - Sensors spanning thermal zones
 - Aggregator thermal zones (avg, min, max)
 - Hierarchical thermal zones
 - Q: All of the above?
- Range-based governor