BPF Host Network Resource Management

Lawrence Brakmo, Alexei Starovoitov

Facebook
Menlo Park, USA

Abstract
Linux already supports the allocation and management of
many of its resources. Examples are CPU and memory, were
one can allocate these resources per cgroup. However, the
network subsystem lacks good mechanisms for managing its
resources. For example, it is not easy (or in some cases pos-
sible) to allocate egress and ingress bandwidth per cgroup.

In contrast to CPU and memory that are local resources,
networking is a global shared resource. For example, if we
want to limit ingress bandwidth per cgroup, we need to mod-
ify the sender to slow down. Dropping packets at the re-
ceiver when the ingress bandwidth is exceeded may penalize
the sender but cannot recover the wasted bandwidth.

In this paper we propose a new BPF based mechanism
for managing bandwidth that is efficient, eliminates stand-
ing queues and is flexible.

Keywords
BPF, Linux, TCP, Networking

Introduction

The goal of the BPF Nework Resource Management (NRM)
project is to provide the necessary mechanisms for manag-
ing network resources, such as bandwidth, through BPF pro-
grams. In other words, to create a BPF based framework for
efficiently supporting policing of both egress and ingress
traffic based on both local and global network allocations.
For example, limiting per-cgroup egress and ingress band-
widths.

By efficient we mean things like not wasting bandwidth
(i.e. flows can reach the imposed limits) and not increasing
latencies (i.e. not increasing RTTs or not increasing tail la-
tencies of RPCs). Just dropping packets can cause both is-
sues, so the framework supports other mechanisms that are
covered in later sections.

Linux currently provides traffic control (tc) and queue
disciplines (qdisc) that can be used for limiting egress rates.
However, there is a history of performance issues when us-
ing the HTB qdisc for this purpose. In addition, using qdisc

for rate limiting can create standing queues in the queue dis-
cipline that increase connection RTTs. Finally, using tc
qdiscs lacks the flexibility inherent in BPF programs.

In addition to providing mechanisms for local network
resource management, we are also adding support for man-
aging global resources, such as bandwidths external to the
host. Examples of this would be managing bandwidths at
external links, such as backbone links, or ingress band-
widths at other hosts (which require notifying the sender to
slow down).

Overview

The NRM framework uses existing BPF cgroup skb hooks
(egress and ingress) to keep track of bandwidth use and to
enforce bandwidth limits. Rather than drop packets as most
tc qdisc do to enforce limits, we provide a richer set of tools
to achieve this. For example, the NRM BPF program can
use ECN congestion marking for flows supporting ECN. In
addition, for TCP flows, it can call tcp_enter_cwr() to re-
duce the cwnd of the TCP flow or it can also set the cwnd
directly. And finally, it can also just drop the packet which
is necessary to insure enforcement of bandwidth limits.

In order to support more intelligent BPF NRM program,
these programs can also read current and minimum RTTs as
well as the value of the current cwnd. The ability to know
the flow’s RTT means that one can write NRM BPF pro-
grams that could increase fairness between small RTT and
long RTT flows when enforcing egress or ingress bandwidth
limits.

In order to achieve support for enforcing bandwidth lim-
its based on global network allocations, we propose the use
of resource scopes. For example, we could have a per cgroup
scope that is used to police egress and/or ingress traffic, a
scope for a particular backbone link (i.e. policing all traffic
from this host on that link), etc.

For the rest of the paper we will only consider per cgroup
egress and ingress scopes. Support for more complex scopes
is currently under development.

Bandwidth Management ECT1), then the packet is ECN marked as having experi-
_ enced congestion. Otherwise, if the flow is a TCP flow, we
_ We use virtual token bucket queues to manage band-ca|| the BPF helper function bpf_enter_cwr(skb), which
NRM BPF program. The minimum state required to main- (cwnd) of the flow,based on a linear probability function
tain the vitual queue is: Figure 2 shows the response function used to determine if

struct vqueue { the flow will be made to reduce its cwnd.

long credit; // in bytes
long long last time; // in ns 1
}i

The state is updated whenever a packet is sent as fol-

lows:
0
vqueue.credit += credit per ns(cur- DT MT
rent time - last time, limit rate);

CREDIT

vgueue.credit = max(vqueue.credit,

MAX CREDIT) ;
-) Figure2: Probability of calling bpf_enter_cwr()

vqueue.credit -=

wire length in bytes (skb); The closer the credit is tROP_ THRESHOLD, the more

. . likely thatits cwnd will be decreased. If the credit is less
vqueue.last time = current time; than DROP THRESHOLD, then the packet is droppeth
Where: practice, there is a small area (equal to 15*1500 bytes) that
_ is reserved for small packets (less than 100 bytes) in order
credit_per ns() returns new credit accrued dur- to reduce the likelihood thamall packets will be dropped.
ing the interval of time since the last packet was sent. Thijs protects SYN and SYACK TCP packets as well as

MAX CREDIT represents the maximum creditthatca Pure ACK packets.

be accrued. Credit that is not used cannot continue to ac-
cumulate forever.

Performance Issues
While developing the NRM framework we became aware
of issue that were affecting performance.

wire length in bytes(skb) Returns the size
in bytes that the skb will take in the link. Because the skb
can be larger than the maximum packet size (due to
TSO), we need taccountfor the extra bytes taken by

each packet header (E.g. TCP, IP and ETH). 1. TCP not aware when packets dropped

. TCP is not aware when packets dropped by the NRM BPF
The’_" the NRM BPF program r_nakes decisions based on theprogram.When packets gre droppedpgy a ()q/disc, or a BPF
credit, skb and socket information whig@ NRM BPF pro- - orq4ram associated with traffic control (tc), queue_transmit
gram executes, triggered by an skb write. (called from __tcp_transmit_skb()) returns a special value
Our sample program uses 2 négatvalued thresholds, a 0 nofity TCP that the packevas dropped. TCP then Ofor-
MARK THRESHOLD and abROP THRESHOLD for deter- getsO that it sent the packet (so it will be transmitted again)

mining what actions to take. Figure 1 shows how the current 310 tcP_enter_cwr() is called teduce the cwnd.

value of credit triggers actions. Note that the credit is al- In contrast, when packets are dropped by a cgroup skb
lowed to be negative in order to support bursts without drop- BPF program, there is not special return value to notif. TC
ping packets. Ifthecredit is greater thaMARK THRESH- As a result, TCP assumes the packet was sent and it will need
OLD, then the skb goes throughthe credit is between the to go through the expensive (in terms of flow performance)
thresholds, then the packet is OmarkedO. loss detection and recovery code.

i Our soltion was to use a flag to notify TCP that the

Credr [I I packet was dropped by the NRM BPF progran€P will
e AL : 0 * OforgetO it sent the packet.
Figurel: Credit thresholds 2. High tail latencies due to dropped packets

The action taken on marked packets by the sample pro-When a packet is dropped, and there are no packets in flight,
gram is dependent on flow details. If the flonEIEN ena- it is possible that nothing will trigger sending a new packet
bled (i.e. its IP packets are marked with either ECTO or

until a timeout occurs (no ACKs will arrive togger send- Obviously this is not an ideal solution since it increases
ing new packets). The timeout that usually triggers new CPU usage due to contention of the spinlocks. There are two
packets to be sent is the probe timer (around 200ms). other solutionsve are working on

Our solution was to decrease the probe timer to 20ms 1. Add support for spinlocks in BPF programs. This
when a packet is dropped and there are no other packets in is currently being worked on.
flight. We created aew sysctl ta@ontrol the value to use for
the probe timer. It defaults to 20ms and setting it to O disa-
bles decreasing the probe timer when the NRM BPF pro-
gram drops packets. Once we protected the critical section the bandwidth used
by the cgroup was always within the desired limit. In addi-
tion, the tail latencies or the RPC flows also decreased.

2. Explore using a data structure for managing the vir-
tual queudahat does not have a critical section.

Table 1 shows the benefits of our solution. We use a rate
limit of 1Gbps fora cgroupwith between 1 and 9 concurrent
flows runningbackto-back RPCs. The first 2 columns show
the aggregate goodput (payload throughput) in Mbps with

the upstream kernel and with a kernel patches with our so- Experimental Results

lution (small timer). The last 2 columnsosinthe 99.9% la- The experinental setup was as follows:
tencies for the 1IMB RPCs before and after implementing
our solution. 1. We only used 1 cgroup

2. One server sends to another in the same rack
e 3. We had 1 to 9 concurrent flows doibgck to back

small timer small timer RPCs:
' eah] 250ms| i a. 1flow: 1BIMBRPC
2 856M 2oLl 260ms | e b. 2flows: 1B1MB RPC and one 10KB
5 935M 989M 92ms RPC
9 999M [V 600ms | 345ms c. 5flows: 4D1MB RPCs and one 10KB
RPC
Tablel: Effect of decreasing probe timer on Cubic traffic d. 9flows: 8 P1MB RPCs and one 10KB
RPC

The table shows improvements in both the aggregate 4
goodput and in the 99.9 percentile latencidse goodput '
increases are especially large when there is only one flow.

Bandwidth is limited either by using TC with HTB
or using our NRM framework
5. Limits of 1Gbps or 5 Gbps

Table 2 shows the respective results whenwe use DCTCP o | <000 cases we used netem to increase link la-
(which uses ECN marking) instead of Cubic. The improve- ' tency to 10ms
ments are not as large except for the 9 flows case. Finally, '
note that the aggregate goodput for both Cubic and DCTCP /- We compare 4 cases:
is larger than 1Gbps in someases. This was caused by the a. Cubiq3] using TC and HTB for rate shap-
following issue. ing

. Cubic using NRM BPF for policing
AEEL. c. Cubic with ECN and NRM BPF for polic-

small timer small timer ing
I 953M 953M 9ms 9ms d. DCTCHZ2] and NRM BPF for policing
2 962M 962M 22ms 21ms We used Netes}d] to create the traffic and colledbtv sta-
5 1003M 1004M $2ms Vo tistics and experimembetrics
’ 1029M [0 308ms | 78ms Egress, 1Gbpso addeddelay
Table2: Effect of decreasing probe timer on DCTCP traffi The first experiment consists of a 1Gbps rate limit. Figure 3
shows the aggregate rate for all concurrent flows as well as
3. Updating credit and last_time is a critical section the RTTseen by the flows (or by a different process within

. the cgroup doing pings).
In multiprocessors, the NRM BPF code that updates both

the credit and last_time forms a critical section that needs to
be protected. Otherwise, the NRNPB program cannot en-
force the bandwidth limit<Our solution was tgorotectthe
whole NRM BPF program with spinlocks, making the
whole program a protected critical section.

The axis on the left goes with the bars, while the axis on
the right goes with the diamonds. The graph shows that
when using TCP the aggregate bandwidths are a little
smaller, egept for the case of 1 Cubic flow without ECN

Experiment

— cubicecn=01GTC
— dectcp 1G
— cubic ecn=01G
- cubic ecn=11G

where the aggregate bandwidth is about 10% lower. In addi- ™7 ' l
tion, the RTTs are much larger when using TC and HTB for
rate shaping.

11K~
Experiment

— cubic ecn=01G TC
- detep 1G
— cubic ecn=01G
— cubic ecn=11G

1K

900

g 3 8

T T T

s)
99.9% Latency (ms)
* 50% Latency (ms)

g

g
i
*RTT (u

fets-tt tels2t felsst tels 9t
Number of Flows

Figure5: 1IMB RPC Latencies

Aggregate Rate (Mbps)

g 8
il

g
T

“Number of Flows Figure 6 siows the 10KB 99.8nd B percentildatencies.
DCTCP with NRM hasnuchsmaller 99.9 percentile latency

Figure3: Aggregate Rate and RTT for 1Gbps limit
'qur ggrega : ' ps fimi as compared to the other cases.

The larger RTTs are caused by the standing queues
(queues that do not complbtalissipate) caused by using
HTB for rate limiting. Note that we used the default value
of 260KB for the sysctl tcp_limit_output_bytes. At 1Gbps,
sending 260KB takes about 2ms, which matches the RTT
results.

In summary, the aggregate rate isiamamong all the
casesUsing H1B for rate limiting results in standing queues
that increase RTTs. Agasult, HB in unfair betweeismall
and large RPCGsLOKB RPCs ghieveratesup to 2k less
DCTCP with NRM hwas mth lower 10KB tail la¢ncy,be-
tween 10 and 80x lower.

The next figure, Figure 4, shows the aggtegates for
the 1IMB RPCs (bars) and the rate of the 10KB RPC (dia-
mond). Note how the rate of the 10KB RPCs are very small
when using HTB for rate control. This is caused by the
standing queues and the resulting increase in RTTs. At most,
only one RPC canccur per RTT. Hence, at 2ms RTT the
10KB are limited to a rate of at most 10KB/2ms or 40Mbps.
As a consequence, using HTB creates unfairness betwee
RPC of different sizes. Larger RPC sizes can achieve a
higher rate (1MB RPCs are limited to a rate of 1RtB$ or

Egress, 1 Gbps, 10ms nem delay

Table 3 bows the aggregate rates and 1MB 99.9 percentile
latencies when we increase the link delayl®ms through
netemWith only 1 flow, they all undeshoot thebandwidth
limit. HTB with fgq qdisc (and pacing)chieves lowerates

han withoutfq. With only one flow, the 99% latencies of

TB areworsethan forDCTCP and NRMOn the other
hand, theail latencief the 9 flowexperiments are lower
for HTB than for the others.

4Gbps.
o
Experiment
e — cubic ecn=01GTC Cubic HTB-fq HTB an 858 58 85
§mo- = :ﬁ:ﬁfecn—o 112 Cubic HTB HTB 437 945 20 120
?,’ § — cubic ecn=11G Cubic ma-fq NRM-BPF 410 915 46 141
£ w0 § Cubic mq-fac NRM-BPF 754 944 2 218
Em_ E DCGTCP ma-fq NRM-BPF 666 947 13 143
g, z Table3: Rates and latencies foGhps and 10ms
< | ¢ Egress, 5 Ghps, no added delay
ol S Table 4 kows the rates and latencig® cgroup rates are
, _ limited to 5Gbps. The most notelgle result is thatgain,
Figure4: Goodputs of 1IMB and 10KB RPCs HTB penalizes th&OKB RPC. The rate is only 38bps vs.

) o 295 Mbps forDCTCP and NRM. Similarly, the 99.9% la-
In contrast, when using NRM for rate limiting, the 10KB tency is 3.7ms vs..8ms for DCTCP.
RPC achieves more than 60% of the rates of the 1MB RPCs.

The next figue, Figure 5, shows the 99.9 and 50 percentile However, the 99% laterties are smallenith HTB than

latenciesfor the IMBRPCs.The primay issue isthe in- anything else. Especially when using Cubic, whiee tail
creased tail latency for Cubichen using NRMWe will be latencies aremore than 5x largerThe tail latencies for
exploring new response functions to see if we cearease DCTCP arelnlyO50% largemwith 9 flows. Looking with
the tail latency. more detail at the DCTCehaviowe see some concerning

behaviors, whre thecwnd periodically decreases. We will

investigate to see if the performance of DCTCP can be im-
proved.

Ingress, 1 and 5Gbps rate limits

To limit ingress rates wese thesane mechanisms as for
egress. Since we need a mechanism to notify the semder t
slow down (otherwise we cannot erdertherate limit) we
only tested DCTCP and NRM.

Table 4 shows theesults NRM with DCTCP was very
effective at limitingthe ingress rateachieving 925 Mbps
and 4.6 Gbps respectivelyhe tail latencies were very well
behavedexceptfor thecase of 9 concuent flows at 1Gbps
rate Imit when the NRM program dropped packeBsit
when no packets were dropped, the 99.9 and 5@ndets
are very close (which is veryood.

1000 925 o 9:5 9.0
922 o 19.0 0.7 13.0 0.2
931 o 47.9 0.9 43.0 0.5
945 1493 336.0 207.0 54.0 0.8

4600 o 441 17)

4600 [4.7 0.6 1.9 0.2

4670 o 12.4 1.0 7.7 0.2

4630] 18.5 0.8 15.5 0.2

1000
1000
1000
5000
5000

W VN a2V WV N o

5000
5000

Table4: Ingress 1 and 5 Gbpsate limits, DCTCP

Conclusions

EgressBPF based NRM is able to preverdraling queues
and as a resutmall RPG get higher rates and lowexilt
latencies. The bed$tRM results are achieved wheising
DCTCP. There are some cases when usifiiBHor rate
limiting achieves better results, but we are only starting to
exploreNRM policing dgorithms

Finally, NRM BPF is a greg@atform for experimenting
with policing algorithms for network resource maaaggent.

Future Work
There isstill alot of work to do. We plan to do the following:
1. Explore newpolicing algorithms
2. Tests concurrent flows with different RTTs
3. ExploreusingRTT in the plicing algorithms
4

Test using multiple scopes such as multiple
cgroups and multiple scoppsr flow

5. Test concurrenflows with different TCP variants.
For example DCTCP and Cubic

6. Explore mechnisms fo notifying senderswvhen
doing ingress NRM and the packets do nupp®rt

ECN.

Explore using a hosingress scope tadecrease
incag losses.

Rather than reacting to the packats@TCP snds
them, explore obcking how much data clalibe
sent before TCP sends an skb. This would allow us
to reduce the skb size in order to prevent just
dropping the skb.

References

Brakmo, L. 2017. Network Testing with Netesto.
Netdev 2.1 Technical Conference, Montreal, Can-
ada.

Mohammad Alizadeh , Albert Greenberg , David
A. Maltz , Jitendra Padhye , Parveen Patel , Balaji
Prabhakar , Sudipta Sengupta , Murari Sridharan,
Data center TCP (DCTCPRroceedings of the
ACM SIGCOMM 2010 conference, August 30
September 03, 2010, New Delhi, India

Sangtae Ha, Injong Rhee and Lisong KWBIC:
A New TCRFriendly HighSpeed TCP Vari-
ant, ACM SIGOPS Operating System Review, VOI-
ume 42, Issue 5, July 2008, Page(s)7842008.

