TC S/W datapath: a performance analysis

Paolo Abeni*, Davide Caratti’, Eelco Chaudron¥, Marcelo Ricardo Leitner®
Red Hat Inc.
Email: *pabeni @redhat.com, Tdcaratti@redhat.com, iechaudro@redhat.com, §marcelo.leitner@gmail.com

Abstract—This paper reports a performance analysis of the
Linux Traffic Control(TC) S/W datapath, comparing it to the
traditional kernel Open vSwitch(OVS) datapath, examining its
recent improvements, and looking at new and future improve-
ment in this area, comprising XDP and eBPF usage.

Index Terms—OQOVS, TC, performances, XDP

I. INTRODUCTION

The virtual switch is one of the core building blocks for
NFV. As such, virtual switch implementations are subject to
a large set of functional and performance requirements. The
later could be very challenging for carrier grade-usage and
current H/W.

Given the above, different implementations of Open
vSwitch(OVS), the leading virtual switch project [1] - surfaced
both in user-space and in the Linux kernel.

The original user-space and kernel datapaths have been
sided by a faster DPDK-based implementation. But even
the latter is not able to cope with high-bandwidth line-
rate packet speeds and is weighed down by complex setup
requirements[2].

To overcome these difficulties, H/W offload solutions for
OVS are now spreading. The in-kernel interface to configure
such complex offload is offered by the TC APIs via the TC
H/W offload hook. This design implicitly gave birth to another
in-kernel OVS datapath: the TC S/W datapath, as for each
datapath feature supported in the hardware, we need a software
path implemented in TC to enable it.

Since we now have 2 fairly non-trivial sub-systems imple-
menting the same functionality inside the kernel, we could
consider a de-duplication effort. While the TC datapath is
necessary for H/'W offload, the plain old OVS kernel datapath
is preferred over the TC S/W one as a fallback solution. The
main reasons behind such choice are TC not being yet feature-
complete and OVS kernel datapath being considered faster.

Is that so? This paper will discuss the TC S/W perfor-
mances, looking at its recent and current status, as well looking
at the upcoming future for kernel related OVS efforts.

II. THE TESTING SCENARIO

In this discussion, we will consider the PVP scenario
(Physical to Virtual to Physical) as our reference [3]. The
scenario is described in figure 1. A traffic generator sends
UDP packets at line rate (64 bytes packets on a 10 Gbps link
in our experiments) towards the host under tests. Such host
runs an instance of OVS, configured with a variable number
of bidirectional flows to forward traffic back and forth a local
VM via a tap device. The VM itself runs a DPDK application

Loopback VM

DPDK

TUN driver

/ Open vSwitch
|

/f

Kemel driver

Network C_a@_ I

Traffic Generator

Fig. 1. The setup for PVP testing

(testpmd) to loopback the traffic on the same virtual device.
The host OVS instance forwards back the looped traffic to the
ingress interface, due to the bi-directional rules above.

The testpmd application has the specific role of stressing as
much as possible the forwarding data-plane inside the host.
While the above does not describe a real-life usage scenario
for OVS it allows us to stress the switch with carrier-grade
like traffic with a relatively simple setup.

In our experiments, each OVS flow matches different source
IP address - ingress interface pair and has a single action
to forward the packet unmodified to the relevant end. Using
different src IPs allow different flows to land on different
ingress NIC’s queues with default RSS configuration.

The H/W under test is an Intel Xeon CPU E5-2690 v3
with 12 core/24 threads, using an Intel 82599ES 10-Gigabit
SFI/SFP+ NIC.

PVP tput with Linux 4.17, 1 ingress queues
900000

OVS mommm
TC
800000 | B

700000

600000

500000

PPS

400000

300000

200000

100000

0

Fig. 2. PVP performances - Linux 4.17

PVP tput with Linux 4.17, 16 ingress queues
900000

OVS mmmm
TC o
800000 - g

700000 4

600000 q

500000

PPS

400000

300000

200000

100000

0

Z % %, (00

flows

Fig. 3. PVP performances with multiple receive queue - Linux 4.17

III. THE TC S/W DATAPATH PERFORMANCES

In this section we look at evolution of the performances
of the TC S/W software datapath in the recent pasts and it’s
current status.

A. Past status

Let’s see the figures we collected for the PVP scenario on
top of Linux 4.17 (Figure 2).

We see differences between TC and OVS datapath just
above noise range and overall figures are not bad: sustaining
a packet-rate of an 814Kpps allows line rate on 10Gpbs link
with max MTU frames, and we are not far from that.

But this is a for an uncommon configuration, with only
a single receive queue enabled on the host ingress NIC. The
default number of receive queues for the H/W under test is 16.
Let’s show the performances change with such configuration
(Figure 3).

Topmost perf offender for vhost (1 queue)/Topmost perf offenders for vhost (16 queues)

13.76% tun_do_read
8.08% __slab_free

7.79% vhost_get_vq_desc
7.26% _copy_to_iter
7.23% page_frag_free
5.95% __check_object_size
5.86% handle_rx

4.26% vhost_net_buf_peek
3.69% translate_desc
3.42% iov_iter_advance
3.42% iov_iter_advance
2.65% tun_recvmsg

6.68% _raw_spin_lock
5.51% tun_get_user

5.20% vhost_get_vq_desc
5.17% masked_flow_lookup
4.82% ixgbe_xmit_frame_ring
3.80% translate_desc
3.41% __skb_flow_dissect
3.34% tun_do_read

3.33% iov_iter_advance
2.83% __slab_free

2.55% _copy_to_iter

2.46% page_frag_free

Fig. 4. perf data for Linux 4.17 with OVS backend
vhost—-<pid>

—— | -—87.85%——ret_from_ fork
| kthread
| vhost_worker

I \
|-—79.25%--handle_rx

|-=55.45%—-tun_recvmsg
[...]
—-—8.60%——-handle_tx

|-=7.42%--tun_sendmsg

[...]

Fig. 5. perf data for vhost with call-graph accounting

Again, the performances differences between the TC and the
OVS datapath are small, but the aggregate throughput falls to
very low values as soon as the number of flows grows.

With our configuration, running multiple flows mean con-
current ksoftirq processes enqueuing packets to the vhost
queue. A large performance degradation in such condition
looks like a contention problem. We can easily see that in
the above test the bottle-neck is the vhost process, keeping a
CPU’s core fully busy. With some help from the ’perf’ tool,
we can observe where such process is spending its time.

Figure 4 shows the topmost perf offenders for the vhost
process while using the OVS backend, with the ingress NIC
configured respectively with 1 and 16 receive queues. The data
collected with the TC backend are quite similar.

While the topmost offender’s list differs a lot in the two
reported scenarios, it’s not straightforward to pinpoint the
cause for a 6x slowdown. More importantly, there is no
apparent display of contention problems in the 16 queues
scenario. Which is good, since a lot of effort has been spent
recently to let vhost behave well under contention.

We can use again the ’perf’ tool to fetch more data. Figure
5 shows a slice of the call-graph accounting for the vhost
process in the 16 queue scenario. With call graph accounting
"perf’ measures the time spent in a function summing-up also
the time required recursively by the nested calls.

The ’handle_rx()’ function processes all the packets sent
towards the tun device (from OVS, in our scenario), while the

PVP tput with Linux 4.18, 16 ingress queues
900000

OVS mommm
TC
800000 | B

700000

600000

500000

PPS

400000

300000

200000

100000

0

Fig. 6. PVP performances - Linux 4.18

Topmost perf offender
(OVS backend)

Topmost perf offendersw
(TC backend)

7.50% masked_flow_lookup |5.08% ixgbe_xmit_frame_ring
5.02% ixgbe_xmit_frame_ring|4.63% vhost_get_vq_desc
4.20% vhost_get_vq_desc 4.37% skb_release_data
3.89% iov_iter_advance 3.86% translate_desc
3.18% translate_desc 3.00% iov_iter_advance
2.92% pfifo_fast_dequeue 2.94% tun_get_user
2.83% tun_build_skb.isra.57 [2.89% __skb_flow_dissect
2.81% tun_get_user 2.76% memcmp

2.09% __dev_queue_xmit 2.54% pfifo_fast_dequeue
1.99% handle_tx 2.17% rhashtable_jhash2
1.93% _copy_to_iter 2.14% tun_do_read

1.88% key_extract 2.07% kmem_cache_free

Fig. 7. perf data for Linux 4.18, for vhost process OVS vs TC backend

’handle_tx()’ function processes all the packets sent from the
tun device (by the VM, in our scenario). We can see that the
vhost processing is asymmetric: the receive time is “10x the
transmit time! Looking at the packet counters we can observe
that this difference is not due to the receive phase being slower,
but due to the ’scheduling’ between receiving and transmitting
being unfair.

Such scheduling is done by the vhost process itself, limiting
the burst of packets processed by each direction to a fixed
amount of bytes. In Linux 4.17 vhost also uses a packets-
based limit, but only for the TX direction. So a solution for
the above asymmetry is actually simple: let’s enforce the same
packets-limit on both RX and TX. This has been implemented
in the 4.18 release cycle[4].

B. Recent improvements

Figure 6 shows the performance for the OVS and TC data-
path on top of the 4.18 kernel, using 16 receive queues on the
ingress NIC. When moving to multiple flows scenarios, there
is still a slightly visible performance degradation compared to
single flow, but overall we have a 5x improvement compared
to 4.17. Interestingly, there is a measurable gap between TC
and OVS datapath, a bit above noise range.

PVP tput 4.18 vs 4.19-rc6, 16 ingress queues
900000

0VS-4.19.0-fc6 mmmmm
TC-4.19.0-fc6
TC-4.18 m==—== -

800000
700000
600000

500000

PPS

400000

300000

200000

100000

0

% P < <
2 % 2

flows

Fig. 8. PVP performances - Linux 4.19.0-rc6

Let’s investigate the root cause behind this gap. Figure
7 shows the topmost ’perf’ offenders for the vhost process
with the TC backend, compared to the ones for the OVS
backend. Surprisingly enough, we don’t have a clear indication
where the TC backend causes vhost to spend more cycles.
Instead, we notice a slightly better parsing and lookup time
for the TC backend, due to the usage of the highly optimized
programmable flow dissector infrastructure.

If we look at functions consuming fewer CPU cycles, we
can have instead some hints: with the TC backend, vhost is
calling skb_clone(). While the latter does not look like very
expensive per se, it adds cost to several other skb-lifecycle-
related functions.

Why is the TC backend performing such clone? it uses the
act_mirred TC action to forward the skb to the egress device.
Such module clones the skb, forward the cloned packet and
returns to the caller a controlling action, which is applied by
the caller himself. In the TC S/W datapath use-case, such
controlling action is always DROP. This somewhat convoluted
implementation is necessary as per TC design the caller retains
the ownership of the processed skb.

In the given scenario we can optimize this behavior: the
mirred module could return to the caller a ’redirect’ controlling
action, without performing any clone operation. Such a schema
has been implemented in the 4.19 release cycle[5].

C. Current status

We can now look at the current status, as reported in figure
8. The kernel under test is 4.19.0-rc6, already comprising the
optimization described above. The performance improvement
for the TC datapath over 4.18 is quite apparent, and such
datapath now performs consistently better than the plain OVS
one.

D. Adding more complexity

This discussion does not consider the features list gap
between the TC S/W datapath and the OVS one: currently

some features - notably connection tracking - is available only
with the OVS datapath. While this gap exists, a complete
replacement is not feasible by definition, but such a gap has
shrunk over time and support for conntrack H/W offload is in
the work. That will likely bring conntrack support for the TC
S/W datapath, too.

The scenario used for testing contains several simplifications
over real-life use cases; for example, each of our rules contains
a single action for forwarding the packet, while real deploy-
ments would add at least another one for adding or removing a
layer of encapsulation (e.g. vxlan[6]), possibly more to modify
in-flight packets. With the TC S/W datapath, each action adds
significant overhead, due to the usage of indirect calls and
retpolines.

Moreover, the usage of some specific TC actions does
not scale well with concurrent flows, due to the usage of a
per-action spinlock to protect the data structure access. One
relevant example is ack_pedit, used by the TC S/W datapath
to perform packet modification.

The solution here is the conversion of TC actions to RCU
usage, currently a WIP. The ack_pedit module is actually the
only relevant left-over.

The current direction of the Linux kernel networking stack
to address retpoline overhead is introducing listification”
support for the relevant hooks: instead of processing a single
packet at the time, packets that need similar processing are
aggregated into a list and passed to the next layer altogether[7].
While interesting, this approach is hard to adapt to the TC
subsystem due to the large number of hooks involved and
the stratification which would make such implementation very
complex, at best.

With both the OVS and TC datapath, the vhost process has
a pivotal role and we hit a bottle-neck there. We could easily
almost double the throughput in the PVP scenario, using two
separate processes for RX and TX. This latter solution is quite
alike at using multiple virtio_net queues, as we trade more
CPU power for more throughput.

Finally, we must note that the packet rate reached so-far,
while allowing us to process “10Gbps packets at max MTU
size, is nowhere near carrier-grade requirements, which ask
for line rate even with min MTU packet size ("14Mpps).

In that respect, even bypass solutions, like OVS-DPDK, are
quite far from a perfect match. With these, we measure “3Mpps
in the given scenario, still quite above what the kernel currently
offers.

IV. PULLING XDP AND EBPF INTO THE PLAY

Currently, support for an XDP/eBPF backend in OVS is
under development[8]. XDP is the increasingly recurring solu-
tion of choice for high throughput packet processing scenarios
and we may wonder if that will change the current situation
drastically.

Instead of testing the in-progress XDP/eBPF OVS effort,
we opted for a basic custom implementation of an XPP/eBPF
forwarding datapath[9], with the main reasoning to avoid the
eventual bottle-neck present in this initial phase (and the real

PVP tput with Linux 4.19.0-rc6, 16 queues
1200

1000 -

800 |

600

KPPS

400

200 -

flows

Fig. 9. PVP performances - XDP datapath

reason behind this choice being the need to experiment first
hand with this inescapable piece of the Linux networking).

With our test implementation, an XDP program is attached
to both the ingress NIC and the tun device. It parses the
ingress packet up the IP header, extracts the source IP address,
looks-up the ingress device id and source address in an user-
configured per-CPU map and forward the packet to egress
device specified in the map entry. Flow stats are maintained
in the same entry. Overall we have a single map lookup and a
redirect per packet, with no tail calls. The userspace counter-
part allow us to install the needed ruleset and collecting
aggregated statistics.

While this is far from being a complete or even usable
solution (outside this specific testing scenario), it should give
a reasonable upper bound of the performances we can expect
with OVS-XDP, as the latter requires several map looks-up
and tail-calls per packet.

The performance results are represented in Figure 9,
compared to the TC S/W datapath on top of Linux 4.19.0-
rc6. The benefit is really apparent, but we are still far line rate
with small packets.

V. FUTURE WORKS AND CONCLUSION

The forwarding performance for the TC S/W datapath
improved in the recent past up to and above the level of
the OVS kernel datapath. While in the current status it can
sustain reasonably stressing workloads, it’s still far from the
challenging level required by NFV.

In the near future, we hope that UDP GRO could land in
the kernel for forwarded packets, introducing bulking support
for some of the scenarios tested here. Specifically, since, each
NAPI instance can aggregate at most 8 flows, we can expect
performance benefits for test-cases with 100 flows or lest.

REFERENCES

[1] “Open vSwitch” https://www.openvswitch.org/

(2]

3

—_

(4]
(5]

(6]
(71

(8]
[9]

“Measuring and comparing Open vSwitch performance”
https://developers.redhat.com/blog/2017/06/05/measuring-and-
comparing-open-vswitch-performance/

“Automated Open vSwitch PVP testing”
https://developers.redhat.com/blog/2017/09/28/automated-open-vswitch-

pvp-testing/.

“vhost_net: use packet weight for rx handler, too”
https://github.com/torvalds/linux/commit/db688c24eada63b1efe6d0d7d835e5c¢3bdd7 Ifd3
“TC: refactor act_mirred packets re-injection”
https://github.com/torvalds/linux/commit/8f3f6500c 7493 5bfe5a9067e3 106b806f336facf
“OVS flows logic” https://wiki.openstack.org/wiki/Ovs-flow-logic

“Handle multiple received packets at each stage”
https://github.com/torvalds/linux/commit/2d1b138505dc29bbd7 ac5f82f5a10635(f48bddb
“OVS eBPF datapath”

https://mail.openvswitch.org/pipermail/ovs-dev/2018-June/34852 1. html

“XDP dumb switch” https://github.com/altoor/xdp_dumb_switch/

