
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

More CO-RE? Functions, optimizations and
ensuring trace accuracy

Alan Maguire
Linux Kernel Networking, Oracle
alan.maguire@oracle.com
blogs.oracle.com/linuxkernel
September 2022

mailto:alan.maguire@oracle.com

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Making use of the BPF Type Format

We are using BTF more and more in kernel observability and debugging.

As such, we need to ensure we have as complete a picture as possible in
our BTF representation – we will focus on kernel functions here.

To be clear - this presentation is fairly far in the weeds – the vast majority
of kernel functions are represented correctly in BTF (depending on what
optimization level you build your kernel at, you may see few of these issues
– if any!)

However it is critical that tracing provides a complete picture that preserves
accuracy where possible.

2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Specific Motivation

Most distros enable some level of optimization.

Long-standing issues in tracing “isra breaks kprobes”
– https://github.com/iovisor/bcc/issues/1754

Surprising how often we see issues with “missing” functions, or unexpected
argument values.

Compile Once – Run Everywhere has made running BPF programs on
different kernels much easier by insulating us from type offset changes.

Maybe some of the same mechanisms might help here?

Let’s start by seeing how complete our BTF representation is.

3

https://github.com/iovisor/bcc/issues/1754

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

How completely does BTF cover kernel functions?

Because /proc/kallsyms lumps variables and functions together as text (T/t)
objects, we can use objdump to get a better count of core kernel functions:
$ objdump -t vmlinux | awk '/ F / { print $0}'|wc -l
 55774
And counting BTF_KIND_FUNCs for kernel vmlinux:
$ bpftool btf dump file vmlinux | awk '/ FUNC /
{ print $3 }' | wc -l
 48790

So we are missing BTF info for 6984 functions – approximately 1 in 8 kernel
functions; what are these missing functions?

Remaining count: 55774 – 48790 = 6984

4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Duplicate function definitions:

Many static functions have multiple definitions in the kernel

$ objdump -t vmlinux | awk '/ F / { print $6}'|sort|uniq|
wc -l

55055

...which brings our discrepancy down to 6265 functions.

These have identical function signatures, so aren’t a BTF issue, but do
present a problem – which do I attach to?

Might make sense to have an “attach-all” option, as we might miss events
if we attach to just one.

Remaining count: 55055 – 48790 = 6265

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Unlikely-to-run .cold functions

The largest subset of these – over 50% - are “.cold”-suffixed functions

$ objdump -t vmlinux | awk '/ F / { print $6}'|sort |
uniq|grep ".cold" |wc -l

3342

We notice in kallsyms, a function is always paired with a .cold suffixed
function of the same name:

ffffffff8a477d50 t a4_probe

ffffffff8a75b2d8 t a4_probe.cold

What are these?

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Unlikely-to-run .cold functions

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html

The cold attribute on functions is used to inform the compiler that the
function is unlikely to be executed. The function is optimized for size
rather than speed and on many targets it is placed into a special
subsection of the text section so all cold functions appear close together,
improving code locality of non-cold parts of program. The paths leading to
calls of cold functions within code are marked as unlikely by the branch
prediction mechanism. It is thus useful to mark functions used to handle
unlikely conditions, such as perror, as cold to improve optimization of hot
functions that do call marked functions in rare occasions.

7

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Unlikely-to-run .cold functions

We don’t have DWARF information about .cold function signatures.

Looking at examples – e.g. a4_probe[.cold] – the .cold function is used to
handle unlikely error paths such as the highlighted one below:

a4 = devm_kzalloc(&hdev->dev, sizeof(*a4), GFP_KERNEL);

if (a4 == NULL) {

hid_err(hdev, "can't alloc device descriptor\n");

return -ENOMEM;

}

Remaining count: 6265 – 3342 = 2923

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Partially-inlined .part.N functions
The next largest subset - are “.part.N” functions. These overlap with .cold
functions, so let’s eliminate them from our count:

$ objdump -t vmlinux | awk '/ F / { print $6}'|sort |
uniq|egrep -v .cold|grep ".part."|wc -l

954

Again we notice in kallsyms, a function is often paired with a .part variant:

ffffffffc108ccf0 t account_huge_nx_page.part.0 [kvm]

ffffffffc1093bb0 t account_huge_nx_page [kvm]

Note the address of the .part.0 is prior to the associated function. What
are these?

9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Partially-inlined .part.N functions
/* The purpose of this pass is to split function bodies to improve inlining. I.e. for function:

func (…) {

if (cheap_test)

something_small

else

something_big

}

Produce:

func.part (…) {

something_big

}

func (…) {

if (cheap_test)

something_small

else

func.part (...);

}

https://github.com/gcc-mirror/gcc/blob/master/gcc/ipa-split.cc
10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Partially-inlined .part.N functions
.part functions are generated from bigger funtions which cannot be inlined in
their totality. The aim is to inline the inline-able part at call sites where
possible, and the non-inlined .part then gets called from these.

We can see in many cases (390/1385), the parent function is not inlined, and
we have both parent and .part.0, but sometimes we just have the .part.0 too:

 ffffffff89e6b590 t account_event_cpu.part.0

In the above case, the actual function site was inlined.

So tracing this != tracing account_event_cpu()

Remaining count: 2923 – 954 = 1969

11

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scalar replacement, parameter-modifiying .isra.N functions
$ objdump -t vmlinux | awk '/ F / { print $6}'|egrep -
v .part |egrep -v .cold |sort |uniq|grep ".isra" |wc -l

833

-fipa-sra

Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference by
parameters passed by value.

https://github.com/iovisor/bcc/issues/1754 (“ISRA breaks kprobes”)

These represent a case where optimization may diverge from the function
signature.

Remaining count: 1969 – 833 = 1136

12

https://github.com/iovisor/bcc/issues/1754

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scalar replacement, parameter-modifiying .isra.N functions
#include <stdio.h>

struct foo {

 int val1;

 int val2;

};

static noinline void doit(struct foo *foo, int val1, int val2) {

 printf("got val1 %d val2 %d\n", val1, val2);

}

int main(int argc, char *argv[]) {

 struct foo foo;

int i = 1;

foo.val1 = argc; foo.val2 = I;

doit(&foo, foo.val1, foo.val2); // foo optimized out, val1 first arg, val2 constant

return 0;

13

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scalar replacement, parameter-modifiying .isra.N functions
We see that the function description in DWARF reflects function signature
in source, not optimizations:
<1><3d7>: Abbrev Number: 25 (DW_TAG_subprogram)

 <3d8> DW_AT_name : (indirect string, offset: 0x77): doit

 <2><3e4>: Abbrev Number: 26 (DW_TAG_formal_parameter)

 <3e5> DW_AT_name : foo

 <3ec> DW_AT_type : <0x409>

<2><3f0>: Abbrev Number: 27 (DW_TAG_formal_parameter)

 <3f1> DW_AT_name : (indirect string, offset: 0x7c): val1

 <3f8> DW_AT_type : <0x5f>

<2><3fc>: Abbrev Number: 27 (DW_TAG_formal_parameter

 <3fd> DW_AT_name : (indirect string, offset: 0x2ad): val2

 <404> DW_AT_type : <0x5f>

14

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scalar replacement, parameter-modifiying .isra.N functions
There is still hope! Later subprogram info refers to the same function tag:
<1><40f>: Abbrev Number: 28 (DW_TAG_subprogram)

 <410> DW_AT_abstract_origin: <0x3d7> ←-- this is the doit function

 <2><42a>: Abbrev Number: 29 (DW_TAG_formal_parameter) ←-- this is val1, and location value is

 000000e2 0000000000401150 000000000040115c (DW_OP_reg5 (rdi))

 <42b> DW_AT_abstract_origin: <0x3f0>

 <42f> DW_AT_location : 0xe2 (location list)

 <2><437>: Abbrev Number: 29 (DW_TAG_formal_parameter) ←-- this is foo, and looking at location entry

 00000130 0000000000401150 0000000000401163 (DW_OP_GNU_parameter_ref: <0x3e4>; DW_OP_stack_value)

 <438> DW_AT_abstract_origin: <0x3e4>

 <43c> DW_AT_location : 0x130 (location list)

 <2><444>: Abbrev Number: 30 (DW_TAG_formal_parameter) ←-- this is val2; we see it is const so not passed into doit

 <445> DW_AT_abstract_origin: <0x3fc>

 <449> DW_AT_const_value : 1

15

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Scalar replacement, parameter-modifiying .isra.N functions
This isn’t very well documented but in gcc/dwarf2out.cc we see comment in
gen_subprogram_die():

 /* This function gets called multiple times for different stages of

 the debug process. For example, for func() in this code:

 void func() { ... }

 ...we get called 4 times. Twice in early debug and twice in

 late debug:

…

 4. Once for func() itself. As in (2), this is the specification,

 but this time we will re-use the cached DIE, and just annotate

 it with the location information that should now be available.

So for an .isra function

– we can correlate the abstract origin description with the original function name; and

– note which arguments actually refer to registers to determine register/argument relationship.

16

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

 Constant propagation .constprop.N functions
$ objdump -t vmlinux | awk '/ F / { print $6}'|egrep -
v .part |egrep -v .cold |egrep -v .isra | sort |uniq|grep
".constprop" |wc -l

284

These represent (possibly multiple copies of the same) function with
(conflicting) constant parameters.

These again represent a case where optimization may not reflect the function
signature.

Remaining count: 1136 - 284 = 852

17

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Remaining functions

Counting cases discussed so far:

$ objdump -t vmlinux | awk '/ F / { print $6}'|grep -E
"(\.part|\.cold|\.constprop|\.isra)"|sort |uniq|wc -l

5341

Remaining count: 6265 – 5341 = 924

Of these 924, 739 are declaration-only static call trampolines used to mitigate
SPECTREv2, skipped by BTF generation:

$ grep __SCT_ missing_btf_funcs |wc -l

739

Remaining count: 924 – 739 = 185

18

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Remaining functions

Functions prefixed by xen_hypercall_ are not in DWARF, and these amount to

$ grep xen_hypercall missing_btf_funcs |wc -l

49

Remaining count: 185 – 49 = 136

Many of the remaining functions – 87 to be exact - are assembly only, so don’t
have DWARF (arch_rethook_trampoline, asm_load_gs_index, …); 10 more
functions are declaration-only (so are skipped for BTF generation); and the
remaining 39 are __ia32 __i64 syscalls that have no DWARF representation.

Remaining count: 136 – 87 – 10 - 39 = 0

So we have accounted for all kernel function symbols!

19

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What to do – easier cases

.cold (3342) and .part (954) functions have no DWARF info to convert to
BTF (unless there is just one .part.0 function replacing the original).

Declaration-only (749) functions are explicitly skipped for BTF generation.

Assembly functions (87) have no DWARF → no BTF conversion is possible.

Duplicate static function names (700) – perhaps support multiple attach
option to cover attaching to all of them? Or kallmodsyms-like solution?

20

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What to do – harder cases
.isra (833), .part (954) and .constprop (284) can change function args.

.constprop, .part are hard to to handle, given that
– multiple representations for different constants may be used for the same base function; and

– multiple sets of these static functions may exist too.

Possible for .constprop (where one .constprop replaces the original).

Avoid handling .part, since tracing might miss the inlined prologue.

It seems that the most feasible path is for .isra functions.

If so, we have some decisions to make:
Should BTF reflect optimizations or original function signature?

And if not via BTF FUNC_PROTO, how would we represent optimization changes?

21

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

CO-RE for functions to the rescue?

CO-RE principles would argue for a more stable representation, not
dependent on compiler optimization.

Ideally we want BPF users to be able to write portable programs based on
function signature and hide the details where possible, similar to CO-RE
for types.

Proposal 1: BTF retains non-optimized function signature from DWARF,
while providing additional annotations to allow tracing programs to get
accurate argument data where possible.

Proposal 2: libbpf uses these annotations to hide optimization issues from
consumers where possible using CO-RE mechanisms

22

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Function argument annotations via declaration tags?

BTF provides support for declaration tags that can reference a specific
argument in a function signature

Having conventions around tag names containing information such as
“arg2 is optimized out”, “arg3 is const 1” seems possible..

Perhaps we could use the kind flag in the BTF_KIND_FUNC to signal the
presence of function argument declaration tags?

If the flag is set for a tracing function, libbpf knows it needs to do CO-RE
relocations based upon declaration tags.

How to handle optimized-out values? Zero (like exception handling)?

23

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Proof-of-concept

A version of pahole that

– Finds DWARF subroutine parameters that use DW_AT_abstract_origin
to point at original function parameter; then

– Retrieve basic location information; if not a register for args < max #
register args, we flag it as “optimized out”

– When generating BTF, we can use that info

– Current version just skips such args in BTF, but that’s not ideal

https://github.com/alan-maguire/dwarves/tree/btf-optimization

24

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Proof-of-concept example

static ssize_t __init xwrite(struct file *file, const unsigned char *p,

size_t count, loff_t *pos);

Becomes xwrite.constprop.0

Callers pass “pos” as pointer to static variable:

static __initdata loff_t wfile_pos;

Late debuginfo for xwrite shows:

 <b324e> DW_AT_location : 10 byte block: 3 40 72 48 83 ff ff ff ff
9f (DW_OP_addr: ffffffff83487240; DW_OP_stack_value)

pahole PoC spots the fact that this ^^ isn’t a register

25

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Non-optimized functions and parameter checking

This version of pahole also identified some non-suffixed functions where
stack was used for args instead of registers

 ZSTDLIB_API ZSTD_DStream*
ZSTD_createDStream_advanced(ZSTD_customMem customMem);

customMem is a larger struct, passed via the stack.

Recent support for struct support for trampoline-based progs handles
small (register-passed) struct case; maybe we could use these
mechanisms to handle the larger struct case too?

26

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Using tag information from BTF to fixup function args

Can we emit relocations for tagged arguments, to fix them up to look
right?

Could we hack PT_REGS_PARMx_CORE() to point at the right things,
based upon parameter tagging?

Assumes we know what we are attaching to, so would need to be attach-
time..

27

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Conclusion

Handling optimizations is hard!

– copy_query_item.isra.0.part.0.constprop.0

Ensure tracing semantics make sense; if not, don’t represent at all.

Separating function signature – more stable – from optimizations seems
most CO-RE-like behavior.

Late DWARF debuginfo provides mechanism to spot optimizations.

BTF declaration tags seem like a good mechanism to allow us to annotate
the function prototype.

28

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

References

Good summary of problem “isra breaks kprobes”

https://github.com/iovisor/bcc/issues/1754

Proof-of-concept for spotting optimized parameters

https://github.com/alan-maguire/dwarves/tree/btf-optimization

29

https://github.com/iovisor/bcc/issues/1754

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

