Linux Plumbers Conference 2022

Contribution ID: 293 Type: not specified

OPENED Tool for Managing eBPF Heterogeneity

Wednesday, 14 September 2022 12:30 (30 minutes)

Case for OPENED for eBPF NF Development

The recent past has been the emergence of eBPF in building high performance networking usecases such as
load balancing, K8s CNI, DDoS protection, traffic shaping etc. However, unlike traditional software datapath
technologies, eBPF code development exhibits enormous heterogenity in terms of choice of kernel hook points,
data sharing mechanisms as well as kernel loading tools. Today, these decisions are made at code development
time; however, to be truly effective such decision must be made hollistically using information about other
eBPF programs running on the server.

We argue that the developer of an network function (NF) (consisting of multiple eBPF functions) has no idea
of the other NFs that will be chained together at run time to create the datapath. Hence, decisions taken at
the development stage are bound to be suboptimal. A solution for this problem can be taking eBPF specific
decisions (such as hook point) at run-time. Unfortunately the process of altering design choices at run time
is non-trivial due to two properties of the eBPF runtime. First, porting code written for one hook point to
another requires modification in terms of input data structures and available bpf_helper functions. Second,
deciding the optimal and most efficient combination eBPF specific decisions (e.g., data structures) requires
exploring a large number of design choices.

For example, porting and reusing existing functionalities, say GUE encap/decap processing from Meta’s Ka-
tran code base, in a new program would require isolating the GUE specific functionalities and their associated
control and data dependencies, and modifying them for use in the new program. This process requires com-
plete understanding of the program, is time consuming and typically tends to be error prone.

The porting task is further complicated in eBPF due to its heterogenity that prevents code written for one
hook point from generally being able to run at a different hook point. For example, consider an observability
program parsing packet headers and updating counters, that is written in XDP chained with a TC program
that also parses headers and performs QoS enforcement. To avoid duplication of parsing, the developer might
want to move the observability program to the TC hook point, chain it with the QoS enforcement TC program
and share parsed packet headers between both modules. However, without appropriate transformations, XDP
code cannot be run at TC.

This difficulty of porting also leads to large eBPF projects working in (strong) siloes and not reusing similar
functionalities available in other production grade open source projects. A documented example of such
behavior is the decision of the Cloudflare team to develop their own load balancer code, Unimog, instead of
reusing Meta’s Katran load balancer. A consequence of this difficulty to port eBPF code is that a typical eBPF
solution is built as a monolith consisting of a number of tightly coupled eBPF programs.

Clearly such siloed and monolithic developer community does not augur well for both a) wider eBPF adoption
as new developers will either have to rewrite readily available modules or reuse the entire code base, a choice
that will likely introduce unnecessary bloat and overheads to their solution. As well as for b), future innovation
as developers will waste effort in adding implementations of similar functionalities (in same language!) in
their siloed codebases, resulting in replication of effort instead of combining forces innovating on the newer
paradigm changing design options that eBPF introduces.

While there have been efforts like BTF CORE to streamline deployment of eBPF code across different kernel
versions, very little effort exists in making eBPF code reusable amongst codebases. In particular, recent efforts
such as Walmart’s L3AF requires rewriting code to use tail calls and is further limited to programs of the same
type. We believe that demonstrating the feasibility of a general approach {\to transforming eBPF NF code built

https://github.com/facebookincubator/katran/
https://github.com/facebookincubator/katran/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://l3af.io/

with certain (development time) eBPF design choices to run time optimal choices based on actual datapath
requirements} is a key first step towards breaking developer silos and fostering concerted innovation in eBPF
based datapath technology.

This motivates us to create tooling that enables 1) automated extraction of specific eBPF code pieces from
different projects, 2) hook point specific transformation that facilitates running code written for one hook
point against a target hook point and 3)composition of multiple programs to create the necessary pipeline.
We envision a world, where NF developers can pick and choose functionalities from different projects and
compose them together to build flexible and high performance network datapaths. In this paper, we describe
OPENED, a tool that supports extracting specific code functionalities from a given project, transforming them
for running at the desired target hook point and composing them together to build flexible packet processing
pipelines.

Workflow

Our tool has a three stage workflow corresponding to three major tasks for consuming third party code in
one’s project, viz., a) Extraction, b) Transformation and c) Composition. Each of the stages, in turn, consists
of a multi-step user-in-the-loop workflows to inform and guide the tool in making appropriate decisions. The
input to the system consists of a yaml specification describing the required information for all three stages.

Stage 1: Extraction

For the first stage of extracting code, the specification provides an array of network functions of source code, in
the form [URLkernel_ebpf_ code_repository, URLfile_path:line number] of function definitions. For example,
the “xdpdecap” function in Katran will be specified as: [github.com/facebookincubator/katran/blob/main/katran,
github.com/facebookincubator/katran/blob/main/katran/decap/bpf/decap_kern.c:223]. Given this input, our
current prototype computes the Minimal Compilable Unit (MCU), i.e. the minimal set of source artefacts e.g.
source files, configruations, data sources, build files etc. in third party code base which when taken together
will successfully compile, and be able to load and execute in the kernel at the same kernel hook point. The au-
tomated extraction of MCU involves identifying both control and data dependencies (in the form of eBPF map
updates and look ups) amongst functions. Our prototype extends Codequery tool which provides a sqlite db
with querying capabilities on top of CTAGS and Cscope indices of the entire codebase. We extend codequery
to determine the function call graph of our extraction target and the functions called by them recursively. We
stop exploration of function call graph once the called functions are defined in standard system libraries.

The output of the tool is two JSON arrays corresponding to the list of all functions along with their location
(file, start and end line numbers) inside code_repository and the definitions of various maps which are uti-
lized in the code. Our tool also generates two types of warning results for which it needs user-in-the-loop
intervention a) specific instances of global maps for which definitions was not found in the source code inside
code_repository (maps which are instantiated in user code), b) list of functions for which multiple declara-
tions with same call signature are found. For warnings of first type, the user is expected to ensure that map
instantiation (inside user code) is also done for the ported instance. For the second type of warnings the user
needs to keep the right function call details and remove the details of duplicates. A simple program then
copies all the selected files and map declarations to create a new source file for MCU, which is then compiled
and loaded at the original hookpoint to complete the extraction stage.

Stage 2: Transformation

For the hook point transformation, the input yaml specifies the target hook point for the function extracted
earlier. Hook point transformation is implemented using source code transformation tools viz. coccinelle
and IXL that allow developers to express matching patterns/rules in source code and their corresponding
code level transformations. Our choice of using source code transformation tools, as opposed to byte code
level transformation is motivated by the need for developers to maintain/debug source code repositories over
longer time periods. Source code transformation tools seem to be sufficient for most of the use cases we have
encountered so far. For instance, for XDP to TC transformation, we need to replace XDP decisions such as
XDP_PASS and XDP_DROP with corresponding TC actions such as TC_ACT_OK(/PIPE) and TC_ACT_SHOT.
Similarly we need rules to replace byte offsets such as ethernet header protocol (ethhdr->h_proto) value with
corresponding skb struct field (skb->protocol) accesses. Similarly, we require rules that can transform bpf
helper functions across hook points. Based on our experiments with large open source code repositories, we
find that the combination of coccinelle and TXL is sufficient for our transformation rules. We would also
point out, that not all pairs of hook point transformations are feasible, starting from source code, for instance
due to the unavailability of corresponding helper functions, e.g. bpf_msg_push_data at XDP layer. In this
case, the tool will raise an error that the transformation is not feasible due to missing helper functions or lack
of available kernel state (e.g. connection tracking state at XDP). To enable universal hook point transforma-
tion, there is a need for a domain specific language(DSL) where the developer expresses packet processing
operations at a high level, that are then compiled down to eBPF hook point specific programs. We leave the
design of such a DSL to future work. At the end of the transformation stage, we verify that the transformed
code is semantically equivalent to the original code by running and verifying program output against function

https://github.com/ruben2020/codequery
https://coccinelle.gitlabpages.inria.fr/website/
http://www.txl.ca/

specific unit test cases extracted from the third party codebase.
Stage 3: Composition

In the composition stage, the user-in-the-loop input is the order in which the (multiple) eBPF programs for a
given interface at different hookpoints. To this end, transformed eBPF programs are chained together using
hook point specific mechanisms such as libxdp (for multiple XDP progs) or TC multi-prog (for TC), or using
generic tail calls for hook points that do not provide specific mechanisms for program chaining.

Status

Our current prototype is able to transform XDP programs to TC compatible programs and we have validated
results on a variety of opensource cobebases viz. xdp tutorial, Mizar, suricata xdp filter and Meta’s Katran.
The prototype is written in 425 LoC of C++ code. We currently have seven rules for transforming the TC
compatible programs. For the largest program, Katran, our tool took ~500ms. One of the many instances of the
user-in-the-loop intervention that we observed while running our tool on Katran was: during the extraction
phase, our tool identified many functions defined in multiple files and required the user to determine which
to keep (e.g., process_packet).

I agree to abide by the anti-harassment policy

Yes

Primary authors: Prof. BENSON, Theophilus (Brown University); Dr KODESWARAN, Palanivel (IBM Re-
search); Dr SEN, Sayandeep (IBM Research)

Presenters: Prof. BENSON, Theophilus (Brown University); Dr KODESWARAN, Palanivel (IBM Research); Dr
SEN, Sayandeep (IBM Research)

Session Classification: eBPF & Networking

Track Classification: eBPF & Networking Track

https://www.mankier.com/3/libxdp
https://github.com/xdp-project/xdp-tutorial
https://github.com/CentaurusInfra/mizar
https://github.com/OISF/suricata/blob/master/ebpf/xdp_filter.c

