
Can the Linux networking stack be used with very high speed
applications?

SEPTEMBER 2022

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Introduction

2© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Set out to answer a fundamental question:
How does the Linux networking stack scale as the line rate increases?

Stated another way: When 400G and 800G become common, will the S/W be ready?
● Get out in front on what is needed and start working on solutions
● Changes to Linux take time - way too much time (e.g., XDP H/W hints)

Scale “up” (pushing a single flow to line rate) is as important as scale “out” (multiple flows to reach
line rate)
● e.g, Machine Learning apps

Created a custom setup to investigate what is needed to scale S/W to higher line rates
● Able to push a single flow to over 670 782 Gbps and more than 31M pps

Test Setup

3© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Off-the-shelf servers

 Ryzen 9 Zen 3 cpu (5950x 16-core), 5GHz
 128GB, DDR4, 3200 MT/s

Ubuntu 20.04 OS

Unmodified 5.13.19 kernel

Xilinx FPGA - VCU1525

Getting Around Current Physical Limits

4© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

PCI gen3 x16 (128 Gbps cap)

2 QSFP28 100Gbps interfaces

Idea: Payload in benchmark app is
meaningless. Why send it?
● Drop payload over the wire

Key Point: Software stack sees actual
packet size and rate that TCP wants to
send

No modification to kernel. Payload games
confined to driver and FPGA user logic

Zerocopy / Direct Data Placement

5© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

memcpy - never going to happen
● Speed limited to ~30Gbps with memcpy
● ZC / DDP type scheme is a requirement for high speed networking

Existing Linux Zerocopy APIs
● Tx: fairly easy to use, but has its overhead

get_user_pages (and variants) plus reaping completions (recvmsg syscalls)

● Rx: very limited and tricky to use
Requires a specific MTU size and header split such that payloads are exactly PAGE_SIZE
Side band with memcpy for data less than PAGE_SIZE

Key Point: Modern workloads need hardware to land data in application buffers

Modified iperf3 to avoid memcpy

6© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

TX: Added support for ZC API (--zc_api option)
● Good enough for these tests to show intent - avoiding memcpy from userspace
● Extra CPU cycles for page pinning and completions is a factor, but not limiting one

Rx ZC API is too limiting and not usable for generic testing

Mimic intent of ZC API on Rx by dropping data
● --rx_drop option to iperf3 to use MSG_TRUNC with recvmsg
● Packets and data traverse networking stack as usual, attach to socket, process wakeup
● MSG_TRUNC drops payload to avoid memcpy to userspace

Net result is avoiding memcpy while still using existing socket APIs

Memory Management

7© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

400G at 4096 L2 MTU = 12+M pages per second

● Actual number depends on MTU and how S/W and H/W handle posted buffers

FPGA driver managed pages for packets similar to other high speed NIC drivers
● Page per packet to keep it simple across MTUs
● Max pps in tests 31+M pps means 31+M pages per second handled by driver
● Even split page for 1500 MTU means 16.5M pages per second

Avoid system page allocators
● Page pool infrastructure as the base layer
● Driver managed per-cpu cache on top (preferred allocation if available)

skb recycling via napi cache
● Use napi_build_skb over build_skb

Key Point: Current buffer management scheme has too much overhead

Reducing Packet Rate Handled by S/W

8© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Amortize S/W stack overhead with more data per packet
● FIB lookup, socket lookup, tc and netfilter hooks, etc

MTU
● More payload per packet on the wire

TSO into S/W GRO or H/W LRO
● Goal is pushing effective MTU seen by S/W up to 64kB

TSO -> S/W GRO

9© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

TSO -> H/W LRO

10© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Data Rates on the Wire with TSO/*RO

11© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Packet Rate on the Wire with TSO/*RO

12© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

MTU / TSO Trade-off

13© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Reducing Packet Rate Handled by S/W

14© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

non-GRO/LRO case shows maximum pps for S/W stack: ~3M pps
● increasing MTU alone is insufficient

MTU affects TSO goal which affects S/W packet rate

GRO helps but S/W analysis of packet headers wastes CPU cycles

LRO:
● @1500 MTU: 31.7M pps on the wire -> 720k pps into software stack
● @9100 MTU: 8.3M pps on the wire -> 1.2M pps into software stack

Key Point: Need a solid, robust H/W based LRO scheme to scale up

Socket Buffers and Syscalls

15© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Keep the Tx pipeline primed

Reduce the overhead of using
sockets to get data to/from H/W

More data per recvmsg /sendmsg
syscall

More data queued up in socket
buffers

-l and -w args to iperf3

Socket Buffers and Syscalls

16© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Comparison of 64M per
read/write, 128M socket buffer
vs 32M per read/write, 64M
socket buffer

Key Point: Need to manage
datapath without system
calls
● io_uring does this via

user-kernel queues, but it
too is not sufficient

Hugepages

17© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Tx ZC API iov is passed to driver and then H/W
● 4kB page size = 17 fragments per TSO skb
● 2MB hugepage = 2-3 fragments per skb
● non-ZC path for TCP has 2-3 fragments per

skb

More fragments per skb == more overhead
● internal_get_user_pages_fast and

skb_release_data become prominent in perf
profiles

Key Point: Reduce the overhead of the buffer
representation going through the networking
stack.

Congestion Control Algorithm

18© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Hardware Considerations - CPU

19© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Speed is important
● CPU bound processing packets

L3 cache and task placement
● packet processing and application need to share L3 cache
● pinning means disabling irqbalance (static configuration)
● some CPU architectures make that more difficult

512kB

16MB

32kB

0CPU

L1 cache

L2 cache

L3 cache

512kB

32kB

1

512kB

32kB

6

512kB

32kB

7

… …

Zen 2

16MB

512kB

32MB

32kB

0CPU

L1 cache

L2 cache

L3 cache

512kB

32kB

1

512kB

32kB

6

512kB

32kB

7

… …

Zen 3

Hardware Considerations

20© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Memory Speed

● Epyc based servers with memory speed from 2400 MT/s to 3200 MT/s
● Ryzen servers with 3200 MT/s
● Populate ALL slots

NIC - bumped ring size of 8192
● irq driven system - too many packets land before irq handler runs
● See drops today with 200G nics and 4096 ring size

Scale Out

21© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

VCU 1525 has 2 MACs

Isolated resources - task placement, device queues

● 700+ Gbps for each of 2 streams (750G on one, 750G on the other) at 4000 MTU

Kernel Regressions

22© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Misc. Tidbits

23© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Ubuntu based systems: Disable CONFIG_INIT_ON_ALLOC_DEFAULT_ON
● page clearing on alloc is cpu intensive (i.e., performance killer)

Be weary of SMIs

Any packet socket running on the system kills performance
● e.g., tcpdump, lldpd
● all packets are cloned

Key Point: Application wanting high performance can be impacted by random events

Summary

24© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Linux TCP stack can scale to high bit rates, but bottlenecks with socket API need to be removed

Must have a scheme where hardware places packet payload directly in application buffers

Better memory / buffer management scheme

Must have a solid LRO scheme from H/W - S/W GRO will not cut it

Reduce / Eliminate system calls

Simpler representation of application memory in skb as it traverses the networking stack

Resource isolation allows scale out and up

Followup

25© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Be sure to catch the next talk at netdev 0x16

Thank You

Results with ConnectX-6

27© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

