
Proprietary + Confidential

Peter Gonda - pgonda@google.com
Linux Plumbers CC Micro Conference 2022

DICE for Confidential VMs
Measured boot based on chaining signatures

Proprietary + Confidential

Agenda

● What is this talk?

● What is DICE

● DICE and Confidential VMs

● What's been done / needs updating

Proprietary + ConfidentialProprietary + Confidential

Start a discussion around measured boot and attestation

Propose a possible solution

Meet people interested in building solutions

What is this talk?

Proprietary + ConfidentialProprietary + Confidential

Users of Confidential VMs can use attestation to remotely verify their workloads code identity

Goal

Proprietary + ConfidentialProprietary + Confidential

Users of Confidential VMs can use attestation to remotely verify their workloads code identity

Goal

Proprietary + ConfidentialProprietary + Confidential

Users of Confidential VMs can use attestation to remotely verify their workloads code identity

Goal

Proprietary + ConfidentialProprietary + Confidential

Device Identifier Composition Engine

TCG spec whose goal is “... to provide security and privacy foundations for systems without a TPM …”

Results in an identifier which represents the combination of hardware and software of a devices boot sequence

DICE

Proprietary + ConfidentialProprietary + Confidential

● Layered approach - DICE Chain
● Boot divided into layers

○ OVMF
○ Grub2
○ Linux

● Each boot layer N:
○ Measures N+1
○ Certifies N+1
○ Clears N’s private keys

● UDS: Unique Device Secret
● CDI: Compound Device Identifier

DICE: Layering
DICE Device

Layer 0 CDI-0

Layer 1 CDI-1

Layer N CDI-N

Measures Certifies

UDS

Proprietary + ConfidentialProprietary + Confidential

● Inputs for each layer
○ CDI-N
○ DeviceID key pair w/ cert
○ Code + config of next layer

● Outputs:
○ CDI-N+1
○ N+1 Alias Key Certificate

● Layer N must zero out CDI-N and DeviceID
Key priv

DICE: A Layers Job

Proprietary + ConfidentialProprietary + Confidential

● Workload at end of DICE chain has:
○ DeviceID asymmetric Key Pair N
○ Certificate Chain [0, N-1]

● Workload can:
○ Use key pair to attest identity to remote

parties
○ Use CDI-N derived key for sealing

DICE: End State
Attestation Report

Certificate of bootstage N

Certificate of Workload

Certificate of bootstage 0

Certificate of SoC

Signed by previous
boot stage

Signed by Soc

Signed by HW
Vendor

Proprietary + ConfidentialProprietary + Confidential

A linux DICE flow

CDI-2’

CDI-2CDI-0 CDI-1

OVMF

bzimage.efi

initramfs

dockerd

rust container

golang container

OVMF

Proprietary + ConfidentialProprietary + Confidential

A linux DICE Cert Chain

OVMF DeviceID Cert
SIGN(
 HASH(OVMF) ||
 HASH(OVMF_DeviceIDpub),
 ASP-VCEK)

Kernel DeviceID Cert
SIGN(
 HASH(bzimage.efi ||
 initramfs) ||
 HASH(KERNEL_Kpub),
 OVMF-DeviceID)

Container DeviceID Cert
SIGN(
 HASH(rust container) ||
 HASH(RUST_Kpub),
 Kernel-DeviceID)

AMD
VCEK Cert
Chain

Container Quote
SIGN(
 [User-Data],
 Container-DeviceID)

Proprietary + ConfidentialProprietary + Confidential

A linux DICE Cert Chain

OVMF DeviceID Cert
SIGN(
 HASH(OVMF) ||
 HASH(OVMF_DeviceIDpub),
 ASP-VCEK)

AMD
VCEK Cert
Chain

1. Validate OVMF binary is
acceptable

2. Verify Signer, ASP’s
VCECK, is trustworthy

Proprietary + ConfidentialProprietary + Confidential

A linux DICE Cert Chain

OVMF DeviceID Cert
SIGN(
 HASH(OVMF) ||
 HASH(OVMF_DeviceIDpub),
 ASP-VCEK)

AMD
VCEK Cert
Chain

Kernel DeviceID Cert
SIGN(
 HASH(bzimage.efi ||
 initramfs) ||
 HASH(KERNEL_Kpub),
 OVMF-DeviceID)

We can then trust signatures
of OVMF DeviceID

Proprietary + ConfidentialProprietary + Confidential

● GET_KEY command can be used to get CDI-like data.

○ Must enforce next layer cannot use same GET_KEY

Layer 0 for AMD SNP

Proprietary + ConfidentialProprietary + Confidential

What needs updating?

● Already have /dev/open-dice0

● OVMF

● grub

● distro specific boot processes

○ systemd

Proprietary + ConfidentialProprietary + Confidential

● DICE gives workloads DeviceID key pairs
● DeviceID cryptographic combination of software and hardware state, ie Code Identity
● DeviceID can perform Remote Attestation
● Can be used in-place of TPM or to compliment one

Recap

Confidential
VM Customer

DeviceID Client Cert

mTLS

Proprietary + ConfidentialProprietary + Confidential

Let's discuss on linux-coco@

Get in touch directly pgonda@google.com

Links:
TCG DICE
Open DICE code and spec

Questions / Comments?

mailto:pgonda@google.com
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://pigweed.googlesource.com/open-dice/+/HEAD/docs/specification.md
https://pigweed.googlesource.com/open-dice/+/HEAD/docs/specification.md

Proprietary + Confidential

Thank You

Proprietary + ConfidentialProprietary + Confidential

AMD SEV

● Use guest owner as HRoT

● Guest owner can provision and certify

instances

What about the UDS?

Proprietary + ConfidentialProprietary + Confidential

void dice_layer(CDI: cdi,
 ecdsa-pair: device-id,
 ecdsa-cert: device-id-cert,
 boot-layer: next) {
 TCI next-layer-hash = HASH(next.code ||
 next.config)
 CDI cdi-next = HMAC(cdi, next-layer-hash)
 ecdsa-pair device-id-next = HMAC(
 cdi-next,
 `device-id`)
 ecdsa-cert next-cert = certify(
 device-id-next,
 device-id)
 …
 clear_mem(cid)
 clear_mem(device-id)
}

DICE: A Layers Job

Proprietary + ConfidentialProprietary + Confidential

A linux DICE flow now with an SVSM

CDI-3’

CDI-3CDI-1 CDI-2

OVMF

bzimage.efi

initramfs

dockerd

rust container

golang container

OVMF

CDI-0

OVMFVMPL0
SVSM

