
The Multi-gen LRU

The ChromeOS team
Google



2

Current status

● Patchset v14 being tested in linux-next
● Patchset v15 expected to be in v6.1 (LTS)
● 8 downstream kernels carrying the patchset
● 2 additional backports WIP
● 8 server app benchmark results posted
● 2 more server app benchmarks WIP



3

Next steps

● Make MGLRU the default
● Leverage the page table scanning
● Integrate with eBPF



4

Make MGLRU the default

Major obstacles
● Free bits in page->flags: need (a few) more
● Performance test coverage: need (a lot) more
Minor concern
● Code health: refactoring needed
Nonissue
● Stability: production ready



5

Leverage the page table scanning

Unused page tables can cost a fortune
● Reclaiming them may be (relatively) low-hanging fruit
● Discussed during LSFMM 2020
● LWN: “Ways to reclaim unused page-table pages”
Detect empty page tables
● Especially when under memory pressure
● A producer-consumer model may fit in nicely



6

Leverage the page table scanning

THP internal fragmentation is common
● Accesses to a single base page makes the entire THP seem hot
● Shielding the rest of 511 base pages from page reclaim
● The worst case: those 511 pages have never been used
Detect THP internal fragmentation
● Periodically switch to 512 consecutive PTEs mapping
● Stop protecting fragmented THPs from page reclaim



7

Integrate with eBPF

The MGLRU framework
● “MGLRU”: simple
● “Framework”: flexible
eBPF programs can generally
● Obtain page access info from MGLRU
● Override the default generation assignment
Specifically they can
● build access heatmaps, supplement madvise(), etc.



Demo: access heatmaps



9

https://docs.google.com/file/d/1MJxaPYD3BVyBtK9nXPtJeBHyeYm7WnWO/preview?resourcekey=0-L2WFd1dZbRy7d1G0Qy4AkA


10

Thank you!


