
Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

mmuse: Memory management of persistent
memory in userspace

Giving userspace control over dynamic virtual machine guest
memory to survive kexec

James Gowans (jgowans@amazon.com)
David Woodhouse (dwmw2@infradead.org)

Amazon / AWS / EC2

LPC, MM MC, September 2022

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Agenda

1 Background, Problem and Requirements

2 Implementation Options

3 Proposal: “mmuse” fs (mem mgmt in userspace)

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Live update

Live update of hypervisor via kexec:
serialise -> kexec -> deserialise -> run

Persist guest memory and state across live update (kexec).

Different to snapshot/restore: full restart of userspace process;
new VMM binary! Only preserve guest.

Objective: Make live update properly supported! Starting with
memory.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Live update memory management

Memory “use cases:”

Basic case: fixed allocation at launch.

Memory overcommit: dynamic allocation/reclaim incl swap

Deliver faults to userspace for post-copy LM.

Keep DMA running during kexec: IOMMU persistent pgtables

Pass through slice of PCI BAR

Side-car VM: carve out portion of memory to run another VM.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)
Options considered: userspace vs kernel

Options considered

Fully kernel management persistence: Traditional kernel-driven
allocations. Kernel state passed from old to new kernel. Like
pkram1 RFC; think tempfs with persistence.
State can be passed similar to Xen breadcrumbs.
Pros: fast, Cons: complex state hand over.

Filesystem with userspace control: Filesystem backed by
non-kernel managed memory: hard split of persistent vs ephemeral.
Provide privileged userspace process the ability to control memory
mappings (pg offset to PFN) of files.
Store arbitrary file types: memory, state, pgtables, etc.

1https://lwn.net/Articles/851192/
James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)
Options considered: userspace vs kernel

Suggestion: filesystem with userspace control

Idea floated at LSF/MM earlier this year:
https://lwn.net/Articles/895453/

Suggesting userspace filesystem. Justification:

Avoid complexity of passing and re-hydrating state.

Avoid attempting to expose allocation policies and things like
swap to persistent memory.

Allow userspace policy and implementation to develop freely.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Proposal: “mmuse” fs (mem mgmt in userspace)

Carve out persistent memory by mem= cmdline param:

Mount mmuse, setting backing file to something with access
to the carved out memory: /dev/mem, DAX device, etc.

Control process: own persistent memory, create files, program
allocations into kernel via file ioctls.

Client process (QEMU): use those allocation in non-privileged
way: just open the file.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Example: Set up filesystem and backing memory. Mount:

mount -t mmuse guest-memory /mnt/guest-memory

Initially admin file for control process:

ls -l /mnt/guest-memory/

-rw-rw---- 1 root root 0 Aug 4 00:00 admin

Set backing to /dev/mem:

int admin_fd = open("/mnt/guest-memory/admin")

int devmem_fd = open("/dev/mem")

ioctl(admin_fd, SET_BACKING_FD, devmem_fd)

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Example: Programming a mapping from backing memory to a file:

dst_fd = open("/mnt/guest-memory/dom123_0_3GiB");

struct mmuse_mapping mapping = {

.dst = dst_fd,

.src_start = 100 * GiB,

.size = 3 * GiB,

.dst_start = 0,

.granulaity = GIGANTIC_PAGE // lvl 3 -> 1 GiB

};

ioctl(admin_fd, MAP_MEMORY_RANGE, &dst_fd);

When client processes mmaps that file it would get backing
memory, faulting in 1 GiB PTEs.
Control process would replay after live update.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

To persist or not to persist?

Should the filesystem preserve state internally across kexec: files,
mappings, etc. Or should userspace re-drive filesystem state?
Userspace need to know state anyway, so ought to be able to
re-drive.

Advantage of persisting: 1) faster restore on LU, 2) kernel can
consume files early.

Advantage of not persisting: No need for memory for pmem for
metadata. Generally simpler.

Suggest: no persist at first, retrofit when more stable.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Discussion and Questions

Work so far:
Fairly complete proof of concept implemented. Not LKML worthy
yet, but could be!

Open floor for questions/comments.

Some ideas for feedback:

Are we re-inventing or overcomplicating this?

Other use-cases than live-update?

Other ideas to solve this which we should look at?

Should we add mmuse to linux?

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Backup slides

Backup slides.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Example: heirarchy using one mmuse file as backing memory for
another:

int source_fd = open("/mnt/guest_memory/dom:123_memory")

mount -t mmuse dom:123_memory /mnt/dom:123_memory

int admin_fd = open("/mnt/dom:123_memory/admin")

ioctl(admin_fd, SET_BACKING_FD, source_fd)

Use case: hand over large chunk of memory to guest VMM. That
VMM can carve it up for sidecar VMs.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace



Background, Problem and Requirements
Implementation Options

Proposal: “mmuse” fs (mem mgmt in userspace)

Example: memory overcommit

Memory overcommit: reclaim a chunk of memory currently
assigned to a file:

struct mappings = {

.dst = dst_fd,

.src_start = (100 << 30),

.dst_start = 0,

.size = (16 << 20)

}

ioctl(admin_fd, UNMAP_MEMORY_RANGE, &dst_fd);}

Use case: hand over large chunk of memory to guest VMM. That
VMM can carve it up for sidecar VMs.

James Gowans & David Woodhouse (EC2) mmuse: Memory management of persistent memory in userspace


	Background, Problem and Requirements
	Implementation Options
	Options considered: userspace vs kernel

	Proposal: ``mmuse'' fs (mem mgmt in userspace)

