Linux Plumbers Conference 2022

>> Dublin, Ireland / September 12-14, 2022

Memory Tiering Jérôme Glisse / Google

Linux Plumbers Conference 2022

Agenda

>> Dublin, Ireland / September 12-14, 2022

- Memory Pyramids
- NUMA Again
- Memory Tiering
- Discussion

Linux Plumbers Conference | September 12-14, 2022

Memory Pyramids

Linux Plumbers Conference 2022

Memory Pyramids

>> Dublin, Ireland / September 12-14, 2022

Register: 0.2 ns	Register: +∞
Cache: 1-40 ns	Cache: 200GB/s-3TB/s
HBM: 50-100ns	HBM: 256GB/s-2TB/s
Local CPU-DDR: 60-100ns	Local CPU-DDR: 50GB/s-200GB/s
Remote CPU-DDR: 120-200ns	Remote CPU-DDR: 50GB/s-200GB/s
CXL-DDR: 180-260ns	CXL-DDR: 60-120GB/s
NVM: 300-400ns	NVM: 4-60GB/s
Over network: 2-4µs	Over network: 10-80GB/s
Latency	Bandwidth

Register: KBytesCache: MbytesHBM: GBytesLocal CPU-DDR: TBytesRemote CPU-DDR: TBytesCXL-DDR: TBytesNVM: PBytesOver network: +∞

Capacity

Plumbers

Capacity / Speed / TCO

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Capacity growth faster than memory performance

Physics⇒Capacity++⇒Power++

Memory large chunk of TCO (Power: 15W / DIMM ⇒ ~120W to 240W & upfront cost)

Plumbers

Capacity & Bandwidth

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

CPU core counts keep growing ⇒Bandwidth per cores barely improve ⇒Capacity per cores improve slower than needs

Density improvement coming to an end

Plumbers

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Same goal: keep improving compute performance

 \Rightarrow Hot data must be in the fastest memory

Through hardware == Like cache

Through software == Memory placement

Linux Plumbers Conference 2022 Tenet

>> Dublin, Ireland / September 12-14, 2022

- Application can not access all its memory at the same time (not enough CPUs)
- Some data structure in an application are access more often than others
- Which data is access more often can change over application lifetime
- Some applications have predictable access pattern
- Others applications have random access pattern
 - Some applications can categorize its data into buckets:
 - From most frequently accessed to least frequently accessed

Linux Plumbers Conference 2022

Explicit vs Implicit

>> Dublin, Ireland / September 12-14, 2022

Explicit placement:

Application place its data to most appropriate memory

Implicit placement: Kernel/Daemon place application memory

Linux Plumbers Conference | September 12-14, 2022

NUMA Again

Plumbers

NUMA Again

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Asymmetric bandwidth & latency⇒NUMA again

But even worse NUMA overlay on memory tiering

Plumbers

NUMA lessons

Source 2022 Northead Action Conference 2022 Northead Action Co

Few application are NUMA aware Large application often are Smaller application can be through library (memory allocation)

⇒Mechanism like autoNUMA

Linux Plumbers Conference | September 12-14, 2022

Memory Tiering

Plumbers

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Cold Page: a page that was not access in last N ms

Hot Page: access more than K times in last L ms

Threshold (N,K,L) can vary over time

Plumbers

Measuring Success

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

What metric can we use to measure success?

% of memory access to fastest memory for a thread ⇒More access to fast memory→Better perf

Not a silver bullet Applications with background activity dominating memory access

Plumbers

Kernel Components

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Cold Pages detection

Hot Pages detection

Page Migration

Policy & Management

Linux Plumbers Conference | September 12-14, 2022

Discussion

Plumbers

Cold Page Detection

>> Dublin, Ireland / September 12-14, 2022

• LRU, MGLRU

Conference 2022

- Good candidates⇒migrate before reclaim
- Access Bit
 - Clear Access Bit⇒No access over N ms
- DAMON

>> Dublin, Ireland / September 12-14, 2022

DAMON == Data MONitor access

Is DAMON good enough ? Better to have cold page monitoring != hot page Cold page do not need region Region can hide cold pages

Hot Page Detection

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

Hot Page

Linux

Plumbers

- \Rightarrow Many access over short periods of time
- ⇒ Software monitoring need high frequency sampling
- ⇒ Large overhead to do software sampling

We want hardware for hot page detection

- Heatmap
- N most recently used address

Plumbers

Conference 2022 Page Migration

>> Dublin, Ireland / September 12-14, 2022

Existing kernel API good enough ?

move_pages() migrate pages() Do we want a more asynchronous API?

Something like io_uring but for memory ? Memory Migration

- Memory reclaim
 Virtual Address Space manipulation

Plumbers

Policy & Management

>> Dublin, Ireland / September 12-14, 2022

Conference 2022

- Policy & Management:
- In kernel ? Like LRU
 - One solution fits all ?
- In userspace ?
 - Different strategy per application groups

memcg point toward userspace being a better places

Configuration

>> Dublin, Ireland / September 12-14, 2022

Plumbers Conference 2022

How do we want to configure memory tiers ?

sysfs API

Linux

Disconnect from NUMA distance

Can help bridge kernel & userspace management

See RFC: Memory Tiering Kernel Interfaces (v4)