


rustc_codegen_gcc:
A gcc codegen for the Rust compiler



rustc is based on LLVM.
rustc provides an API for codegen.
rustc can load a codegen dynamic library.
libgccjit can be plugged to rustc via this 
mechanism.

Merged into the Rust repository.

A gcc codegen for Rust



Rust is becoming more and more popular.
Support more architectures.
Rust for Linux
Embedded programming.
Some projects (Firefox, librsvg) won’t run 
on architectures not supported by Rust.

Why do we need this?



rustc_codegen_gcc was merged into the 
rust repository.

Complete support for global variables.
Support for 128-bit integers (-endianness)
SIMD (stdarch tests).
Bootstrap rustc.
Rust for Linux.

Progress since last year



Alignment.
Packed structs.
Inline asm improvements.
Symbol visibility.
Function and variable attributes.
Many intrinsics.
Many crashes at compile-time and at run-time.

Progress since last year (continued)



Progress since last year (continued)

Tests Last year This year Delta

Passed 4326 4787 +461

Failed 102 52 -50

UI tests improvements



Progress since last year (continued)
Summary of the failing UI tests
Category Number of failing tests

Simd 19

Allocator 9

LTO 10

Asm 3

Other 11



Progress since last year (continued)
SIMD progress

Feature Completion
Target-specific built-ins support in 
libgccjit

Done

Support for vector shuffle in libgccjit Done
LLVM SIMD intrinsics ~99% for x86
Rust SIMD intrinsics ~50%



Progress since last year (continued)
SIMD tests result

Test result: FAILED. 4564 passed; 
12 failed; 0 ignored; 0 measured; 
0 filtered out; finished in 1.03s



Progress since last year (continued)
GCC patches

Add some reflection functions.
Add support for types used by atomic built-ins.
Add support for TLS variables.
Add support for the link section of global variables.
Add support for bitcasts.
Add support for register variables.



Progress since last year (continued)
GCC patches (continued)

Add support for sized integer types, including 128-bit integers.
Add function to hide stderr logs.
Add support for setting the alignment.
Support getting the size of a float.
Fix bug where unary_op will return an integer type instead of the 
correct type.

target: Fix asm generation for AVX built-ins when using -masm=intel.



Progress since last year (continued)
libgccjit 12 feature flag



Features implemented
Basic and aggregate types.
Operations, local and global variables, constants, 
functions, basic blocks.

Atomics.
Thread-local storage.
Inline assembly.
Many intrinsics.
Metadata.



Features implemented (continued)
Setting optimization level.
Support in GodBolt, the Compiler Explorer.
Packed structs.
Alignment, symbol visibility, attributes.
128-bit integers.
SIMD (x86).



What needs to be done?
Unwinding.
Debug info.
LTO.
Endianness support for non-native 128-bit integers.
Add support for new architectures in libraries (libc, 
objects, …) and rustc.

SIMD for targets other than x86.



What needs to be done? (continued)
More function and variable attributes.
GCC constraint code.
Target features (to detect what is supported in an 
architecture, like SIMD).

Distribution via rustup.



What could be improved?
rustc API:

Rvalue vs lvalue.
Landing pads (unwinding).
Handling of basic blocks.
Function vs value.
AST-based IR vs instruction-based IR:

Example: dereference of pointers.
Separate aggregate operations (structs, arrays, vectors).



What could be improved? 
(continued)

libgccjit:
Types introspection (with attributes).

Compilation time.
Missed optimizations.
Binary size.



What’s required to compile Rust for Linux

CPU features detection.
Some compiler flags (-Crelocation-
model=static vs -mcmodel=kernel 
-fno-pie).



Potential issues
Distribution of libgccjit.so (gcc binary targets a particular 
architecture).

Requires a patched gcc until the patches are merged.
Different ABI on some platforms.
rustc --target=sh2 that just works.
Backporting to older gcc (for the Linux kernel).
Running the Rust test suite on new architectures (CI, crater 
runs).

Target triples.



How you can help
rustc_codegen_gcc:

1)Run the tests locally.
2)Choose a test that fails.
3)Investigate why it fails.
4)Fix the problem.

Crates:
 Object
 Libc

Test this project:
 On new platforms.
 To compare the assembly with LLVM.

Good first issue



Sponsors.
Contributors.

Thanks



Questions / discussion




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

