Supporting zoned block devices with non-powerof-2 zone sizes

LPC 2022

Pankaj Raghav, Software Developer at Samsung Semiconductor Denmark Research

Agenda

- Zoned block device support in Linux: Past & Present
- Non-power-of-2 zone size support in Linux
- Conclusion and Future work

Part 1

Zoned block device support in Linux: Past & Present

Definitions

zone: A contiguous range of logical block addresses that are managed as a single unit.

zoned block device: A block device that consists of multiple zone

zone size: Size of a zone

chunk sectors (Linux): A device is divided up into chunks and merging is not allowed across two chunks. Required to be a **power-of-2 (po2)** value when **introduced**. **Zone size** is exposed as **chunk sectors** in block layer

SMR drives

SMR disks track organization

- Standards: ZAC/ZBC
- Overlapping tracks are grouped into bands called zones
- Zone size is always a power-of-2
- Last zone may have a smaller zone size (runt zone)

Zoned NAND flash

- Standards: NVMe ZNS, other standards
- A zone consists of multiple Erase Blocks(EBs)
- Usable LBAs in a zone is **not** a **power-of-2**

Definitions v2

zone: A contiguous range of logical block addresses that are managed as a single unit.

zoned block device: A block device that consists of multiple zone

zone size: Size of a zone. It needs to be **power-of-2** value to work in Linux

chunk sectors (Linux): A device is divided up into chunks and merging is not allowed across two chunks. Required to be a **power-of-2** value when **introduced**. Zone size is stored as chunk sectors in block layer

zone capacity: Usable logical blocks in a zone

LBA gaps

- power-of-2(po2) zone size is required to work in Linux leading to LBA gaps in ZNS devices
- **Reads** in LBA gaps behave like **deallocated blocks** (returns **zeroes** or a **pattern**)
- Writes in LBA gaps are not allowed
- SMR drives do not have this problem

A typical ZNS device layout with a po2 zone size :

zone capacity: 3M zone size: 4M

Part 2

Non-power-of-2 zone size support in Linux

Why?

- Gaps between zone capacity and zone size for flash based zoned devices
 - Gaps inflate the LBA range above the usable size of a block device
 - Application needs to align to zone capacity and not zone size to reap the benefits
 - Gap introduces logic in the read path

Why now?

- Linux removed the power-of-2 chunk sector constraint from v5.10[1]
- ZNS are being deployed in real environments
- New zoned standards are targeting NAND devices
 - Responsibility of the community is to ensure we support new tech without breaking backwards compatibility

History

- 1) PO2 zone size device emulation in NVMe[1]:
 - No change needed in Userspace tools and filesystem
 - Complicates the NVMe driver
 - Cannot be reused by other drivers
 - LBA gaps
- 2) Add native support to block layer and filesystems[2]:
 - No LBA gaps
 - Breaks userspace tools for non-po2 zone sizes
 - BTRFS still in stabilization phase for zoned support, and superblock not power outage proof for non-po2 zone sizes

Samsung Semiconductor Denmark Research

Block I/C

NVMe Driver

ZNS

GOAL

- Enable non-power-of-2 zone sizes in Linux for devices with zone size == zone capacity
- Ensure compatibility for non-power-of-2 zone size devices in existing filesystems and userspace applications until native support is added

Roadmap

Phase 1:

- Add native block layer and nvme driver support for non-po2 zone size drives
- Add a device mapper target to ensure compatibility of applications and filesystems for non-po2 zone size drives

Phase 2:

- Add native non-po2 zone size drive support to filesystems such as f2fs and btrfs, and userspace applications

Current approach

- Native block layer and NVMe driver support for non-po2 zone sizes without performance regression for po2 zone size devices
 - No LBA gaps on raw block device for non-po2 zone size devices
- Device mapper target dm-po2zoned to convert a non-po2 zone size device to a po2 zone size target
 - Avoids breaking userspace and filesystem for non-po2 zone size device until native support is added

Native block layer support Regression

No performance regression in po2 zone size devices and regular block device*

*Test conducted on a null blk with **128M** zone size device in a x86 box

Native block layer support Progression

No performance difference between po2 zone size and non-po2 zone size devices*

*Test conducted on a null blk with **128M** and **96M** zone size devices in a **x86 box**

Handling bio in the emulated zone area

Read:

- split the bio across emulation boundary and fill zeroes on the split bio in the emulated area

Device mapper cost: 8~15% average performance hit

*Test conducted on a null blk with 96M zone size device

Samsung Semiconductor Denmark Research

Conclusion

- Zoned block devices with non-po2 zone sizes can be safely supported in Linux
 - No regression in the hot path for po2 zone size devices
 - Applications can use dm-po2zoned to consume non-po2 zone size block devices until native support is added

Status & Future work

Status:

- Currently in v13 revision[1]
- Tested with blktest, zonefs test suite and fio

/admin-guide/device-mapper/dm-po2zoned.rst	79	+++++
/admin-guide/device-mapper/index.rst	1	+
block/blk-core.c	2	+-
block/blk-zoned.c	37	++-
drivers/block/null blk/main.c	5	+-
drivers/block/null_blk/null_blk.h	1	+
drivers/block/null_blk/zoned.c	18	+-
drivers/md/Kconfig	10	+
drivers/md/Makefile	2	+
drivers/md/dm-po2zoned-target.c	280	+++++++++++++++++++++++++++++++++++++++
drivers/md/dm-table.c	20	+-
drivers/md/dm-zone.c	8	+-
drivers/md/dm-zoned-target.c	8	+
drivers/md/dm.c	8	+-
drivers/nvme/host/zns.c	14	+-
drivers/nvme/target/zns.c	3	+-
fs/zonefs/super.c	6	+-
fs/zonefs/zonefs.h	1	-
include/linux/blkdev.h	80	+++
include/linux/device-mapper.h	9	+
20 files changed, 517 insertions(+), 75 deletion	ons(-))
create mode 100644 Documentation/admin-guide/de	evice	<pre>-mapper/dm-po2zoned.rst</pre>
create mode 100644 drivers/md/dm-po2zoned-targe	et.c	

Future work:

- Add native support to non-po2 zone sizes in filesystems(such as btrfs and f2fs) and userspace applications
- Add non-po2 zone size support in SCSI for Zoned UFS[2]

Acknowledgments Reviewers

- Damien Le Moal
- Hannes Reinecke
- Bart Van Assche
- > Johannes Thumshirn
- Mike Snitzer

Questions?

Help by reviewing the patchset here[1] to make it a part of the next release

[1] https://lore.kernel.org/linux-block/20220912082204.51189-1-p.raghav@samsung.com/

Extras

Samsung Semiconductor Denmark Research

Native block layer support Regression

No performance regression in po2 zone size devices and regular block device*

IO DEPTH		4	8	DIFF
Seq. Write (KIOPS)	Without patches	416	567	
	With patches	417	568	
Seq. read(KIOPS)	Without patches	481	660	±1%
	With patches	480	661	
Random read(KIOPS)	Without patches	440	530	
	With patches	438	529	

*Test conducted on a null blk with **128M** zone size device in a x86 box

Samsung Semiconductor Denmark Research

Native block layer support Progression

No performance difference between po2 zone size and non-po2 zone size devices*

IO DEPTH		4	8	DIFF
Seq. Write (KIOPS)	non-po2	417	566	
	po2	417	568	
Seq. read(KIOPS)	non-po2	483	662	±1%
	po2	482	663	
Random read(KIOPS)	non-po2	440	533	
	po2	438	532	

*Test conducted on a null blk with **128M** and **96M** zone size devices in a **x86 box**

Device mapper cost: 8~15% average performance hit

IO DEPTH		4	8	diff
Seq. Write (KIOPS)	Native non-po2	417	566	-8 20%
	dm-po2zone	393	505	0.270
Seq. read(KIOPS)	Native non-po2	483	666	-15 65%
	dm-po2zone	427	534	-13.0370
Random read(KIOPS)	Native non-po2	440	533	10 506
	dm-po2zone	404	465	- 10.5%

*Test conducted on a null blk with 96M zone size device

Samsung Semiconductor Denmark Research