
Improving data placement for Zoned Linux File systems
Hans Holmberg, Western Digital Corporation



❑ Zoned storage enables

❑ Better media capacity usage

❑ Improved performance 

❑ ..through less Garbage 

Collection

❑ Less GC requires smart data 

placement

Problem description

Conventional SSD ZNS SSD



❑ Not a POSIX file system

❑ Built for RocksDB/TerarkDB

❑ Separates files into zones

❑ Uses write life time hints for 

colocation when needed

ZenFS
Database A Database B Database C



❑ Outperforms XFS for write and 

mixed workloads

❑ Improves both throughput and QoS

❑ Space amplification on par with XFS

ZenFS performance

RocksDB (db_bench)

OLTP workloads (sysbench)



❑ file size = ~ zone capacity

❑ No GC needed, great performance, OK space amp

❑ file size << zone capacity

❑ Tighter app integration required (done for TerarkDB)

❑ Good performance, small amount of GC needed

Lessons learned



❑ Limited to RocksDB/TerarkDB

❑ Not a general purpose file system

❑ Can we bring some of the lessons learned into

❑ f2fs?

❑ btrfs?

❑ bcachefs?

ZenFS limitations



❑ Can we improve the FS block allocators to play 

nicely with ZNS friendly workloads to reduce GC?

❑ Yes we can!

❑ Separate files into different zones when writing

❑ Use write life time hints to co-locate files

What can be improved?



❑ Start experimenting with block allocators

❑ Data placement improvements translates to less GC

❑ Better performance (throughput, QoS)

❑ Small improvements can lead to big wins

❑ Not trivial to implement (but fun!)

❑ Automated benchmarks available, easy to test

Suggested way forward



ZenFS (benchmarks available in tests/)

https://github.com/westerndigitalcorporation/zenfs

ZNS: Avoiding the Block Interface Tax for Flash-based SSDs

https://www.usenix.org/system/files/atc21-bjorling.pdf

Links & further reading

https://github.com/westerndigitalcorporation/zenfs
https://www.usenix.org/system/files/atc21-bjorling.pdf



