
Modernizing the kdump dump tools

Philipp Rudo
prudo@redhat.com

2

What’s it all about?

3

Kdump:
● Mechanism for post-mortem (aka. dump) debugging
● Includes kernel & user space tools
● Essential for “service providers”,

i.e. distros, hardware vendors, etc.

4

makedumpfile:
● Runs in initrd
● Filter & compress dump

crash:
● Read, parse & display information from dump

5

What’s the problem?

6

Both tools parse unstable kABI

Both tools are pretty old[citation needed]

Both tools are backward-compatible

https://en.wikipedia.org/wiki/Cessna_Citation_family

7

From crash’s README

o One size fits all -- the utility can be run on any
 Linux kernel version dating back to 2.2.5-15. A
 primary design goal is to always maintain
 backwards-compatibility.

https://github.com/crash-utility/crash/blob/3ed9ec5c8d09cffac9772abbf54214125ade9127/README

8

Bug in makedumpfile
● Reported: June 2021
● Symptom: Dump corruption on s390
● Problem: mem_section array -> pointer to array (v4.15, Sep 2017)
● Introduced: Workaround for kernel bug in v5.3-v5.5 (Jan 2020)
● Fixed: April 2022, 6 Engineers

https://bugzilla.redhat.com/show_bug.cgi?id=1971036

10

Security aspects
● Dump is huge binary file with complex format
● High complexity

-> high chance for bugs
-> high chance for security problems

● Especially problematic for customer support

11

-> Need to reduce complexity

12

Option 1: Make kABI stable
● Support one version of kABI
● kABI never changes
● All problems are pushed

to kernel developers 🤮

13

Option 1: Make kABI stable
● Support one version of kABI
● kABI never changes
● All problems are pushed

to kernel developers

14

Option 2: Trim history
● Support multiple versions of kABI
● Drop support for “old” kernel
● What is “old”?

-> Either: Lots of work for little to no benefit

-> Or: Causing problems to distros

🫤

15

Option 2: Trim history
● Support multiple versions of kABI
● Drop support for “old” kernel
● What is “old”?

-> Either: Lots of work for little to no benefit

-> Or: Causing problems to distros

16

Option 3: Break backward-compatibility
● Support one version of kABI
● Causing problems to distros
● Can move tools to kernel tree

-> Solves most of the problems 🤩

17

Option 3: Break backward-compatibility
● Support one version of kABI
● Causing problems to distros
● Can move tools to kernel tree

-> Solves most of the problems

18

Pros
● Direct mapping between tools and kernel code

-> Drastically reduced complexity
-> Easier testing and automation,

e.g fuzzers, kABI checker
● Well established processes and tools

in up- & downstream
● Fixes: tag

19

Cons (upstream)
● New tool(s) maintained in kernel tree
● Additional stable-only patches
● Huge, multi year project

-> Need to rewrite/redesign crash
● Long transition phase

20

Cons (downstream)
● New kernel version specific package
● Must update kernel to get tools fix
● Must learn to handle missing features

21

Thoughts & Opinions?

22

Thank you!

23

24

Backup

25

Age of Crash

● Git Jan 2014 (crash-7.0.4)
● Mailing list Oct 2005
● ChangeLog Apr 2004 (crash-3.7-5.4)
● Copyright statement earliest 1999
● LKCD 1.0 Nov 1999
● Release 2.2.5 March 1999
● GDB 5.0 May 2000

https://github.com/crash-utility/crash/commit/03e3937ec7d1b356039433137cc6e531379ca454
https://listman.redhat.com/archives/crash-utility/
https://crash-utility.github.io/crash.changelog.html
http://lkcd.sourceforge.net/news/index.html
https://oldlinux.superglobalmegacorp.com/Linux.old/docs/history/2.2.html
https://www.sourceware.org/gdb/news/

26

Background:
k: 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")

– mem_section array -> pointer to array

k: a0b1280368d1 ("kdump: write correct address of mem_section into vmcoreinfo"), Jan 2018, v4.15
– “revert” type change in vmcoreinfo DWARF in vmlinux⚔

m: 14876c4 ("[PATCH makedumpfile] handle mem_section as either a pointer or an array"), Feb 2018
– Strategy:

● parse mem_section assuming it’s an array
● if SPARSEMEM_EXTREME retry assuming mem_section is pointer to array
● hope one failed

k = kernel, m = makedumpfile

,Sep 2017, 4.15

27

Bug:
m: e113f1c ("[PATCH] cope with not-present mem section"), Jan 2020

– workaround for kernel bug present in v5.3 - v5.5
– validation always succeeds on s390

m: 81b79c5 ("[PATCH] Avoid false-positive failure in mem_seciton validation"), Feb 2020
– only retry when first validation failed

-> dump corruption on s390, with -x option

m: 6d0d95e ("[PATCH] Avoid false-positive mem_section validation with vmlinux"), Apr 2022

– final fix (hopefully)

k = kernel, m = makedumpfile

28

Alternatives to crash
● /scripts/gdb
● crash-python
● drgn

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gdb
https://github.com/crash-python/crash-python
https://github.com/osandov/drgn

29

Tools to be included
● crash
● makedumpfile
● vmcore-dmesg (kexec-tools)
● vmcore-uname (new)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

