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What’s it all about?
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Kdump:
● Mechanism for post-mortem (aka. dump) debugging
● Includes kernel & user space tools
● Essential for “service providers”, 

i.e. distros, hardware vendors, etc.
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makedumpfile:
● Runs in initrd
● Filter & compress dump

crash:
● Read, parse & display information from dump
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What’s the problem?
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Both tools parse unstable kABI

Both tools are pretty old[citation needed]

Both tools are backward-compatible

 

https://en.wikipedia.org/wiki/Cessna_Citation_family
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From crash’s README

o  One size fits all -- the utility can be run on any
    Linux kernel version dating back to 2.2.5-15. A
    primary design goal is to always maintain 
    backwards-compatibility.

https://github.com/crash-utility/crash/blob/3ed9ec5c8d09cffac9772abbf54214125ade9127/README
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Bug in makedumpfile
● Reported: June 2021
● Symptom: Dump corruption on s390
● Problem: mem_section array -> pointer to array (v4.15, Sep 2017)
● Introduced: Workaround for kernel bug in v5.3-v5.5 (Jan 2020)
● Fixed: April 2022, 6 Engineers

https://bugzilla.redhat.com/show_bug.cgi?id=1971036
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Security aspects
● Dump is huge binary file with complex format
● High complexity

-> high chance for bugs
-> high chance for security problems

● Especially problematic for customer support
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-> Need to reduce complexity
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Option 1: Make kABI stable
● Support one version of kABI
● kABI never changes
● All problems are pushed

to kernel developers 🤮
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● kABI never changes
● All problems are pushed

to kernel developers



14

Option 2: Trim history
● Support multiple versions of kABI
● Drop support for “old” kernel
● What is “old”? 

-> Either: Lots of work for little to no benefit

-> Or: Causing problems to distros

🫤
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Option 3: Break backward-compatibility
● Support one version of kABI
● Causing problems to distros
● Can move tools to kernel tree

-> Solves most of the problems 🤩
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Pros
● Direct mapping between tools and kernel code

-> Drastically reduced complexity
-> Easier testing and automation,

e.g fuzzers, kABI checker
● Well established processes and tools

in up- & downstream
● Fixes: tag
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Cons (upstream)
● New tool(s) maintained in kernel tree
● Additional stable-only patches
● Huge, multi year project

-> Need to rewrite/redesign crash
● Long transition phase
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Cons (downstream)
● New kernel version specific package
● Must update kernel to get tools fix
● Must learn to handle missing features
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Thoughts & Opinions?
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Thank you!
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Backup
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Age of Crash

● Git Jan 2014 (crash-7.0.4)
● Mailing list Oct 2005
● ChangeLog Apr 2004 (crash-3.7-5.4)
● Copyright statement earliest 1999
● LKCD 1.0 Nov 1999
● Release 2.2.5 March 1999
● GDB 5.0 May 2000

https://github.com/crash-utility/crash/commit/03e3937ec7d1b356039433137cc6e531379ca454
https://listman.redhat.com/archives/crash-utility/
https://crash-utility.github.io/crash.changelog.html
http://lkcd.sourceforge.net/news/index.html
https://oldlinux.superglobalmegacorp.com/Linux.old/docs/history/2.2.html
https://www.sourceware.org/gdb/news/
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Background:
k: 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")

– mem_section array -> pointer to array

k: a0b1280368d1 ("kdump: write correct address of mem_section into vmcoreinfo"), Jan 2018, v4.15
– “revert” type change in vmcoreinfo  DWARF in vmlinux⚔

m: 14876c4 ("[PATCH makedumpfile] handle mem_section as either a pointer or an array"), Feb 2018
– Strategy:

● parse mem_section assuming it’s an array
● if SPARSEMEM_EXTREME retry assuming mem_section is pointer to array
● hope one failed

k = kernel, m = makedumpfile

,Sep 2017, 4.15
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Bug:
m: e113f1c ("[PATCH] cope with not-present mem section"), Jan 2020

– workaround for kernel bug present in v5.3 - v5.5
– validation always succeeds on s390

m: 81b79c5 ("[PATCH] Avoid false-positive failure in mem_seciton validation"), Feb 2020
– only retry when first validation failed

-> dump corruption on s390, with -x option

m: 6d0d95e ("[PATCH] Avoid false-positive mem_section validation with vmlinux"), Apr 2022

– final fix (hopefully)
    

k = kernel, m = makedumpfile



28

Alternatives to crash
● /scripts/gdb
● crash-python
● drgn

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gdb
https://github.com/crash-python/crash-python
https://github.com/osandov/drgn
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Tools to be included
● crash
● makedumpfile
● vmcore-dmesg (kexec-tools)
● vmcore-uname (new)
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