
1

Isolation aware
smp_call_function/queue_work_on APIs

Marcelo Tosatti (Red Hat)
CPU Isolation MC

2

Situation with system using CPU isolation

● A number of callpaths which can interrupt isolated
CPUs exist, reliance on userspace behaving nicely for
interruptions to not occur.

● Guarantee: If distinct interference sources align in
time, interference on isolated CPU might sum up (off-
topic?).

3

Proposed changes

● Some of those callpaths are executed from userspace and
can therefore return errors.
● Introduce a new cpumask "block_interf_cpumask", with a bit
set for the CPUs which should have such interferences
blocked.
● Introduce _fail variants of functions that interrupt CPUs, with
the variant checking whether CPU is marked as “block
inferferences” and returns an error.
● For smp_call_function* family, stop_machine*, queue_work*

4

Proposed changes pt 2

● block_interf_cpumask written from userspace, after
system initialization (initialization might require code
execution on interference blocked CPUs,for example
MTRR initialization, resctrlfs initialization, MSR
writes, ...).

5

Pattern 1

 block_interf_read_lock(); (per-CPU RWSEM)
...
err = smp_call_func_single_fail();
...
block_interf_read_unlock();

If (ret)
return err to userspace

6

Pattern 2

 block_interf_read_lock(); (per-CPU RWSEM)
...
int cpu = get_target_cpu();
if (cpu_is_blocked_interf(cpu))

return error to userspace
…
Code to interrupt cpu
...
block_interf_read_unlock();

7

8

9

Situation with system using CPU isolation

●

10

Situation with system using CPU isolation

●

11

Some discussion topics

● Location for the cpumask to be exposed to userspace?

● Others?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

