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Situation with system using CPU isolation 

● A number of callpaths which can interrupt isolated 
CPUs exist, reliance on userspace behaving nicely for 
interruptions to not occur.

● Guarantee: If distinct interference sources align in 
time, interference on isolated CPU might sum up (off-
topic?).
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Proposed changes 

 
● Some of those callpaths are executed from userspace and 
can therefore return errors.
● Introduce a new cpumask "block_interf_cpumask", with a bit 
set for the CPUs which should have such interferences 
blocked.
● Introduce _fail variants of functions that interrupt CPUs, with 
the variant checking whether CPU is marked as “block 
inferferences” and returns an error.
●  For smp_call_function* family, stop_machine*, queue_work*
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Proposed changes pt 2

● block_interf_cpumask written from userspace, after 
system initialization (initialization might require code 
execution on interference blocked CPUs,for example 
MTRR initialization, resctrlfs initialization, MSR 
writes, ...).
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Pattern 1

 block_interf_read_lock(); (per-CPU RWSEM) 
...
err = smp_call_func_single_fail();
...
block_interf_read_unlock();

If (ret)
return err to userspace
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Pattern 2

 block_interf_read_lock(); (per-CPU RWSEM)
... 
int cpu = get_target_cpu();
if (cpu_is_blocked_interf(cpu))

return error to userspace
…
Code to interrupt cpu
...
block_interf_read_unlock();
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Situation with system using CPU isolation 

● 
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Situation with system using CPU isolation 
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Some discussion topics

● Location for the cpumask to be exposed to userspace?

● Others? 
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