
Improving the eBPF Developer
Experience With Rust!

Dave Tucker Alessandro Decina

About us

Dave Tucker
● Principal Software Engineer, Red Hat Office of the CTO

● A Go developer, learning Rust

● Networking & Containers (Docker)

Alessandro decina
● Software Engineer, Deepfence

● Added eBPF support to Rust

● Started Aya

Developer
experience

The eBPF DEVELOPER PATH
1. Get hooked with perf and bpftrace

one-liners

2. Identify > 1 line problem that
could be solved with eBPF

3. Choose your own adventure:
a. Use a DSL like bpftrace/systemtap

b. Use C for the eBPF program and
choose a userspace library

c. Use a single language for both
eBPF and userspace

"Choose Your Own Adventure" by Brett Kiger is licensed with CC BY-NC-ND 2.0. To view a copy of this
license, visit https://creativecommons.org/licenses/by-nc-nd/2.0/

Developer Experience
1. Documentation

2. Project Bootstrap

3. Build and Test Loop

4. Debugging

Scattered. Evolving quickly

Change an example from
libbpf-bootstrap

Compile. Load. Manually Check
Behaviour. Or, try
BPF_PROG_TEST_RUN.

printk

Why RUST?

WHy RUST?
Rust is a highly expressive language, comes with a feature
rich standard library and can still get as low level as C

Memory safety (userspace) is great. Powerful type system and
macros make writing eBPF code easier.

Fantastic dev tools including rustup, cargo, rust-analyzer

Aya

ABOUT AYA
Aya is the first Rust native eBPF library. It provides:

● An userspace eBPF library (like libbpf), completely
written in rust

● An high level rust API to write eBPF code - like bpftrace
or the bcc DSL - but using plain rust

THE AYA EXPERIENCE

1. documentation
Image of the book

https://aya-rs.github.io/book https://docs.rs/aya/

https://aya-rs.github.io/book
https://docs.rs/aya/

2. BOOTSTRAP
$ cargo generate https://github.com/aya-rs/aya-template
🤷 Project Name : lpc2021
🔧 Generating template …
? 🤷 Which type of eBPF program? ›
❯ kprobe
 kretprobe
 uprobe
 uretprobe
 sock_ops
 sk_msg
 xdp
 classifier
 cgroup_skb
 probe
 tracepoint

2. BOOTSTRAP
This gives you a workspace with 3 packages:

● lpc2021 (userspace)
● lpc2021-common (code shared between eBPF and userspace)
● lpc2021-ebpf (eBPF code)

2. BOOTSTRAP
A task to generate bindings to kernel types can easily by
added:

$ cargo xtask codegen

This uses aya-gen to create Rust bindings to using the BTF
types in /sys/kernel/btf/vmlinux

3. Build AND TEST LOOP
Build & Run:

$ cargo build

$ cargo xtask build-ebpf

$ sudo ./target/debug/myapp --path ./target/bpfel-unknown-none/debug/myapp

💡 The second step is required as we need nightly rust to compile eBPF and
several unstable cargo features to support having a multi-target workspace.
In time, this step will be removed

4. Debugging
Debugging eBPF programs can be hard. Common options include:

● bpf_trace_printk() - slow, hard to follow output with
multiple programs

● ad hoc perf events to trace program flow and dump data -
works but inconvenient

4. Debugging with aya-log
info!(&ctx, "aya-log is a lightweight logging library for eBPF code");

warn!(&ctx, "it sends logs to userspace as perf events");

debug!(&ctx, "it supports string {}", "formatting");

trace!(&ctx, "it integrates nicely with the standard rust log crate");

error!(&ctx, "find it at https://github.com/aya-rs/aya-log");

4. Debugging with aya-log
07:17:40 [INFO] [src/main.rs:35] aya-log is a lightweight logging library for

eBPF code

07:17:40 [WARN] [src/main.rs:36] it sends logs to userspace as perf events

07:17:40 [DEBUG] (4) [src/main.rs:37] it supports formatting

07:17:40 [TRACE] (4) [src/main.rs:38] it integrates nicely with the standard

rust log crate

07:17:40 [ERROR] [src/main.rs:39] find it at https://github.com/aya-rs/aya-log

https://github.com/aya-rs/aya-log

ROADMAP

Unit TESTING
- We plan to add the ability for program contexts and maps

to be mocked so code can be tested on the host
architecture

- This should speed up the build/test loop significantly

libbpf compatibility
● Automated tests to ensure libbpf compatibility for

implemented program types

● More program types! - LSM and more cgroup hooks are in
progress

cranelift
● A code-generator for WebAssembly, written in Rust

● We’re looking to add an eBPF backend, to allow Rust to
eBPF compilation

QUESTIONS?

FIND US ON GITHUB

JOIN US ON DISCORD

https://github.com/aya-rs/aya
https://discord.gg/xHW2cb2N6G

