
Idmapped Mounts
Per-Mount Ownership Changes

Christian Brauner
christian@brauner.io
@brau_ner

Ownership

- uids and gids express ownership
- VFS uses them for permission checking
- persisted to disk for FS_REQUIRES_DEV filesystems

Ownership & struct inode

- i_uid_read()
- read ownership information from struct inode
- calls from_kuid() to translate kuids to raw uids

- i_uid_write()
- write ownership information to struct inode
- calls make_kuid() to translate raw uids into kuids

ID mappings

- translation of range of ids into another or same range of ids
- notational convention in this talk: u:k:r

u == userspace-id / userspace-idmapset
k == kernel-id / kernel-idmapset
r == range

- associated with struct user_namespace
- init_user_ns has identity idmapping: u0:k0:r4294967295

ID mappings

- make_kuid(u0:k10000:r10000, u1000)

What does u1000 map down to?
id - u + k = n

u1000 - u0 + k10000 = k11000

- from_kuid(u0:k10000:r10000, k11000)

What does k11000 map up to?
id - k + u = n

k11000 - k10000 + u0 = u1000

Ownership: Disk to VFS

- file owned on disk by raw uid 1000

- fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000

- fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k11000

// Examples

xfs_inode_to_disk(), ext4_do_update_inode(), fill_inode_item() // btrfs

Ownership: VFS to Disk

- file owned on disk by raw uid 1000

- fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000

i_uid_read(u0:k0:r4294967295, k1000) = u1000

- fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k1100

i_uid_read(u0:k10000:r10000, k11000) = u1000

// Examples

xfs_inode_from_disk(), __ext4_iget(), btrfs_read_locked_inode()

Creating New Files (Userspace to/from VFS)

Translate between two ID-mappings via the kernel idmapset:

1. Map caller's userspace ids down into kernel ids in the caller's idmapping.
// current_fsuid()

2. Verify caller's kernel ids can be mapped up to userspace ids in filesystem's
idmapping.
// fsuidgid_has_mapping()

Crossmapping

vfs_mkdir()

- caller id: u1000
caller idmapping: u0:k10000:r10000
fs idmapping: u20000:k10000:r10000

/* fsuid_gid_has_mapping() */
make_kuid(u0:k10000:r10000, u1000) = k11000 // current_fsuid()
from_kuid(u20000:k10000:r10000, k11000) = u21000

Filesystem-wide Idmappings

- alter ownership filesystem-wide
- relevant idmapping is represented in the filesystem's superblock
- determined at mount time

Selected Modern Filesystem Use-Cases

Selected Modern Filesystem Use-Cases

- Portable Home Directories
- make login uid and gid random
- take home directory between computers

Selected Modern Filesystem Use-Cases

- Portable Home Directories
- make login uid and gid random
- take home directory between computers

- Containers
- rootfs
- data sharing host <> container
- data sharing container <> container

Idmapped Mounts

File ownership should be changeable on a per-mount basis instead of a filesystem
wide basis.

Idmapped mounts make it possible to change ownership in a temporary and
localized way:

- ownership changes are restricted to a specific mount
- ownership changes are tied to the lifetime of a mount

Idmapped Mounts

Idmapping functions were added that translate between idmappings:

- i_uid_into_mnt()*
- translate filesystems kernel ids into kernel ids in the mount's idmapping

 /* Map filesystem's kernel id up into a userspace id in the filesystem's idmapping. */
from_kuid(filesystem-idmapping, kid) = uid

/* Map filesystem's userspace id down into a kernel id in the mount's idmapping. */
make_kuid(mount, uid) = kuid

- mapped_fsuid()
- translate caller's kernel ids into kernel ids in the filesystem's idmapping by remapping the caller's kernel ids using the mount's

idmapping
/* Map the caller's kernel id up into a userspace id in the mount's idmapping. */
from_kuid(mount-idmapping, kid) = uid

/* Map the mount's userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(filesystem-idmapping, uid) = kuid

*In our documentation I call it "remapping algorithm" because it undoes an existing idmapping and remaps it
according to the mount's idmapping.

Idmapped Mounts: Portable Home Directories
vfs_mkdir()

- caller id: u1001
caller idmapping: u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping: u1000:k1001:r1

1. Map the caller's userspace ids into kernel ids in the caller's idmapping
make_kuid(u0:k0:r4294967295, u1001) = k1001 // current_fsuid()

2. Translate caller's kernel id into a kernel id in the filesystem's idmapping
mapped_fsuid(k1001)

/* Map the kernel id up into a userspace id in the mount's idmapping. */
from_kuid(u1000:k1001:r1, k1001) = u1000

/* Map the userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(u0:k0:r4294967295, u1000) = k1000

3. Verify that the caller's kernel ids can be mapped to userspace ids in the filesystem's idmapping
from_kuid(u0:k0:r4294967295, k1000) = u1000 // VFS to Disk

So ultimately the file will be created with raw uid 1000 on disk.

Idmapped Mounts: Portable Home Directories
vfs_getattr() + cp_statx()

- caller id: u1001
caller idmapping: u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping: u1000:k1001:r1

1. Map the userspace id on disk down into a kernel id in the filesystem's idmapping
make_kuid(u0:k0:r4294967295, u1000) = k1000 // i_uid_write()

2. Translate the kernel id into a kernel id in the mount's idmapping
i_uid_into_mnt(k1000)

/* Map the kernel id up into a userspace id in the filesystem's idmapping. */
from_kuid(u0:k0:r4294967295, k1000) = u1000

/* Map the userspace id down into a kernel id in the mounts's idmapping. */
make_kuid(u1000:k1001:r1, u1000) = k1001

3. Map the kernel id up into a userspace id in the caller's idmapping
from_kuid(u0:k0:r4294967295, k1001) = u1001 // VFS to Userspace

So ultimately the caller will be reported that the file belongs to raw uid 1001 which is the caller's userspace id in our example.

Idmapped Mounts

struct mount_attr *attr = &(struct mount_attr){};

int fd_tree = open_tree(-EBADF, source,
 OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC |

 AT_EMPTY_PATH | AT_RECURSIVE);

attr->attr_set |= MOUNT_ATTR_IDMAP;
attr->userns_fd = fd_userns;

mount_setattr(fd_tree, "", AT_EMPTY_PATH | AT_RECURSIVE,
 attr, sizeof(struct mount_attr));

Filesystem Support & Adoption

- fat, ext4, xfs, btrfs, ksmbd and more to come
- Already widely adopted in userspace with and a variety of patchsets out there

LXD, containerd, systemd, …
- not a container feature!

https://docs.google.com/file/d/1J1B1j2sAslgCiAhLqmRlDFnJN_cfOlBF/preview

