wa

Kernel testlng frameworks

‘ /

Sh hKh

oL)

LINU)X September 20-24, 2021
Q FLLMEERS Why kselftest?
CONFERENCE

e Regression test suite
e Focuses on testing kernel from user-space
e User-space applications (Shell scripts, C programs)
o Kernel Test modules used to exercise kernel code paths
o Allows for breadth and depth coverage (error paths etc.)
e Not for workload or application testing

LINU)X September 20-24, 2021
Q FLLMEERS Why kselftest?
CONFERENCE

Perfect for feature, functional and regression testing
Perfect for bug fix focused regression testing and subsystem testing
Perfect for testing user APIs, system calls, critical user paths, common use cases
Perfect for end to end regression testing

o Provides assurance that “everything works”
Combination of Open and Closed box testing
e For more information on Kselftest framework/run/write tests
o Watch LF Live Mentorship webinar:

s Kernel Validation With Kselftest

https://events.linuxfoundation.org/mentorship-session-kernel-validation-with-kselftest/

LINU)X September 20-24, 2021
Q PLUMBERS Why KUnit?
CONFERENCE

e Focuses on in-kernel testing
o Perfect for:
o testing internal kernel APls
o libraries, drivers, ...,
o individual units of code
o Perfect for unit testing
o Makes it tractable to test all the edge cases

_F—‘.
} TRy

LINU)X September 20-24, 2021
Q PLUMBERS McCabe’s Complexity
CONFERENCE

e Testing all edge cases?
o Imagine trying to reach an arbitrary edge case in the kernel from a syscall
o Reaching every state is intractable

e Solution: Call functions directly to test edge cases

LINU)X September 20-24, 2021
Q PLUMBERS McCabe’s Complexity
CONFERENCE

e Solution: Call functions directly to test edge cases
e McCabe’s complexity is a measure of the number of states, or branches a function can
achieve
o If we have a function, A, call other functions, B1, B2, ..., Bn, and we only test A
o If we try to reach all branches from A, you can see that as the function depth
increases, the total number of branches increases combinatorially
o If we only reach all the states of each function individually, the branches increase
linearly.
e KUnitis a really practical way to test the vast majority of edge cases.

.. 4 |

LINU)X September 20-24, 2021
Q PLUMBERS McCabe’s Complexity
CONFERENCE

e Solution: Call functions directly to test edge cases
e McCabe’s complexity is a measure of the number of states, or branches a function can
achieve
o If we have a function, A, call other functions, B1, B2, ..., Bn, and we only test A
o If we try to reach all branches from A, you can see that as the function depth
increases, the total number of branches increases combinatorially
o If we only reach all the states of each function individually, the branches increase
linearly.
e KUnitis a really practical way to test the vast majority of edge cases.
e For more background info on KUnit like this please see LF Live Mentorship webinar: KUnit
Testing Strateqgies

. e

https://events.linuxfoundation.org/mentorship-session-kunit-testing-strategies/
https://events.linuxfoundation.org/mentorship-session-kunit-testing-strategies/

LI N Ux September 20-24, 2021

PLUMBERS GCOV: How to coverage

CONFERENCE

150

e GCOV keeps track of code run during =

152

execution -

155
e (Generates reports 157

158

e Show what code ran, and what code 159

160

H 161
did not -
163

164

165

166

167

168

169

170

171

172

174
175
176
177
178
179
180
181
182
183
184
185

(RN

: static int apply constraint(struct dev_pm qos_request *req,

: {

enum pm_qos_req_action action, s32 value)

struct dev_pm_qos *qos = req->dev->power.qos;
int ret;

switch(req->type) {
case DEV_PM_Q0S_RESUME LATENCY:
if (WARN ON(action != PM_QOS_REMOVE REQ && value < 0))

ret = pm_qos_update_target(&qos->resume latency,
&req->data.pnode, action, value);

break;

&req->data.pnode, action, value);

}

break;

case DEV PM Q0S MAX FREQUENCY:

action, value);

default:
ret = -EINVAL;
}

return ret;

LI N Ux September 20-24, 2021

PLUMBERS GCOV: How to coverage
CONFERENCE

e Shows directory level summaries

Current view: top level - drivers/base/power Hit Total Coverage
Test: coverage.info Lines: 234 2752
Date: 2021-09-20 14:11:03 Functions: 24 274

| Filename | _ LineCoverage$ | Functions$ |
generic_ops.c C————[00%| 0/73] 00%| 0/22]
main. c | E— [-
power.h 1 818% 9/11 100.0 % 1/1
gos-test.c 1 1000% 49/49 100.0% 3/3
gos.c
runtime.c
sysfs.c
wakeirg.c
wakeup.c

wakeup stats.c

LI N Ux September 20-24, 2021

PLUMBERS GCOV: How to coverage
CONFERENCE

e Shows directory level summaries

Current view: top level - drivers/base/power Hit Total Coverage

Test: coverage.info Lines: 234 2752
Date: 2021-09-20 14:11:03 Functions: 24 274

Filename Line Coverage ¢ Functions ¢

common.c

generic ops.c
main.c

| 38% 31/810 68%
power.h 81.8 % 9/11 100.0 %
gos-test.c 1 1000% 49/49 100.0%
gos.c

runtime.c

sysfs.c
wakeirg.c
wakeup.c

wakeuE stats.c

LI N ux September 20-24, 2021

PLUMBERS GCOV: How to coverage
CONFERENCE

e Shows directory level summaries
e Shows overall summary as coverage number

Total Coverage
Lines: 234 2752
Functions: 24 274

Current view: top level - drivers/base/power
Test: coverage.info
Date: 2021-09-20 14:11:03

| Filename | LineCoverage# | Functions$ |
generic ops.c C—— 00% 0/783| 00% 0/22]
main.c 1 | 4159
power.h 1 818% 9/11 100.0 % 1/1
gos-test.c] 1000% 49/49 100.0 % 3/3
gos.c

runtime.c

sysfs.c

wakeirg.c

wakeup.c

wakeup stats.c

LINU)(September 20-24, 2021
Q P EMBERS Code Coverage IS
CONFERENCE

A great way to quickly find what code IS tested and what code IS NOT tested.

Allows you to quickly identify problem areas, and drill down into a report.
Identify missed branches.

Identify unused code.

LI N Ux September 20-24, 2021

PLUMBERS Code Coverage IS: Example
CONFERENCE static int _ dev pm qos add request(struct device *dev,

struct dev_pm _qos_request *req,
enum dev_pm_qos_req_type type, s32 value)

e Imagine we are testing some code: int ret - o;

if (!dev || !req || dev_pm gos invalid_req type(dev, type))
return -EINVAL;

if (WARN(dev_pm_qos_request_active(req),
"%s() called for already added request\n", _ func_))
return -EINVAL;

if (IS ERR(dev->power.qos))
ret = -ENODEV;
else if (!dev->power.qos)
ret = dev_pm _qgos_constraints_allocate(dev);

trace _dev_pm_qos_add request(dev_name(dev), type, value);
if (ret)
return ret;

req->dev = dev;
req->type = type;

if (rei->tiie == DEV_PM Q0S MIN FREQUENCY)

&req->data.freq,
FREQ Q0S MIN, value);
else if (reqg->type == DEV_PM QOS MAX FREQUENCY)

&req->data.freq,
FREQ_Q0S_MAX, value);
else
ret = apply constraint(req, PM_QOS_ADD REQ, value);

return ret;

LI N Ux September 20-24, 2021

PLUMBERS Code Coverage IS: Example
CONFERE NCE static int _ dev pm qos add request(struct device *dev,

struct dev_pm _qos_request *req,
enum dev_pm_qos_req_type type, s32 value)

. . {
e Imagine we are testing some code: int ret - o;
e We can see that we have edge cases for TR
(@) DEV_PM_QOS_MIN_FREQUENCY ﬁ(mmqgﬁ%xk?g?hzgfgx}mw%ﬂM,_ﬁm_”

o DEV_PM_QOS_MAX_FREQUENCY

if (IS ERR(dev->power.qos))
PY ret = -ENODEV;
else if (!dev->power.qos)
ret = dev_pm _qgos constraints_allocate(dev);

trace _dev_pm_qos_add request(dev_name(dev), type, value);
if (ret)
return ret;

req->dev = dev;
req->type = type;

if (rei->tiie == DEV_PM QOS MIN FREQUENCY)

&req->data.freq,
FREQ Q0S MIN, value);
else if (req->type == DEV_PM QO0S MAX FREQUENCY)

&req->data.freq,
FREQ_Q0S_MAX, value);
else
ret = apply constraint(req, PM_QOS_ADD REQ, value);

return ret;

LI N Ux September 20-24, 2021

PLUMBERS Code Coverage IS: Example
CONFERE NCE static int _ dev pm qos add request(struct device *dev,

struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type, s32 value)

. . {
e Imagine we are testing some code: int ret = o;
o We can see that we have edge cases for e e R s
o DEV_PM_QOS_MIN_FREQUENCY ﬁ(mm@gﬁ%ﬁﬁrﬁkagfgxymwﬁﬂm,_mm_H

o DEV_PM_QOS_MAX_FREQUENCY

if (IS ERR(dev->power.qos))

e The report shows us that our tests do not O o T
cover these edge cases.

ret = dev_pm qgos_constraints_allocate(dev);

trace dev_pm qos_add request(dev_name(dev), type, value);
if (ret)
return ret;

req->dev = dev;
req->type = type;
if (req->type == DEV PM Q0S MIN FREQUENCY)

&req->data.freq,
FREQ_QO0S MIN, value);
else if (rei->tiie == DEV_PM QOS MAX FREQUENCY)

&req->data.freq,
FREQ_QOS_MAX, value);

else
ret = apply constraint(req, PM_QO0S _ADD REQ, value);

return ret;

LI N ux September 20-24, 2021

PLUMBERS Code Coverage IS: Example
CONFERENCE static int _ dev pm qos add request(struct device *dev,

struct dev_pm_qos_request *req,
enum dev_pm_qos_req_type type, s32 value)

. . {
e Imagine we are testing some code: int ret = o;
e We can see that we have edge cases for i Eaay ———
o DEV_PM_QOS_MIN_FREQUENCY () ERTTaIl T ATRRSY MOR CadueREwiS), . FwE.
return -EINVAL; o o
© DEV_PM_QOS_MAX_FREQUENCY if (IS ERR(dev->power.qos))
e The report shows us that our tests do not IR ==
Cover these edge CaSGS ret = dev_pm _qos constraints_allocate(dev);
L . > trace dev_pm qos add request(dev_name(dev), type, value);
e This shows the power of KUnit with IEUEREE o vt
Coverage req->c:ev = d:v;
. . req->type = type;
o We can (and do) Ca” thls functlon if (req->type == DEV_PM QO0S MIN FREQUENCY)

&req->data.freq,

directly in tests — EREq oa BN, walue);

else if (req->type == DEV_PM QO0S MAX FREQUENCY)

&req->data.freq,
FREQ_QOS_MAX, value);
else
ret = apply constraint(req, PM_QOS ADD REQ, value);

return ret;

LINU)X September 20-24, 2021
Q PLUMBERS Code Coverage IS NOT
CONFERENCE

e Code coverage is a tool, not a panacea

e Code coverage helps quickly identify and prioritize problem areas

e Code coverage summaries do not tell you whether your testing is good or bad
o What is the right amount of line coverage?

50%7

70%7

90%7

O 0 O ©

100%7?

LINU)X September 20-24, 2021
Q FrUMBERS What's the right coverage?
CONFERENCE

e How do we measure coverage?
o % of lines?
o % of functions?
o % of branches?
e \What about absolute vs incremental?

R ——
! |
m

LINU)X September 20-24, 2021
Q FrUMBERS What's the right coverage?
CONFERENCE

e Absolute coverage:

o What you expect.

o Everything in the entire codebase at some point in time.
e Incremental coverage:

o The test coverage of the A in a change

_F—‘.
} TRy

LINU)X September 20-24, 2021
Q kil Absolute vs. Incremental Coverage
CONFERENCE

e Incremental Coverage is usually more interesting
o It's much easier to achieve high incremental coverage immediately
o Helps prioritize code more likely to be buggy
o More actionable by developers
O

Code that has not changed in a long time is more likely to be fine

‘(‘
\ r_

LINU)X September 20-24, 2021
Q PLUMBERS Absolute vs. Incremental Coverage
CONFERENCE

e Absolute Coverage is still important, just less important

o Old code may be less likely to contain bugs...

o ...butit’'s often worse when it does
e Often easier for comparing coverage health of subsystems
e FEasier to compute

LINU)(September 20-24, 2021
Q PLUMBERS Kselftest & KUnit
CONFERENCE

o Kselftest
o Good for depth testing covering deeper code paths
o Good for testing commonly used code paths
o Agood test could test some error paths
e KUnit
o Good for targeting error paths & edge cases
o Easier and faster for zeroing in on a kernel area

LINU)(September 20-24, 2021
Q PLUMBERS Kernel Dependability - Safety critical space
CONFERENCE

e Code coverage important for Safety?
o Kselftest & KUnit
o Improvements that could be made?
More tests for coverage?

O
o More tests for regression?
o 777

