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Overview of Telco/RAN : Radio Access Network for 5G

Radio Tower

Data Center
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Network Packets
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Overview of Telco/RAN : Radio Access Network for 5G

Radio Tower

Data Center

Server running Linux PREEMPT_RT

FlexRAN Processing Pipeline

Network Packets

Fixed total latency budget for packet Tx + processing + ack (< 3ms)

Cyclictest latency < 10us

Data transfer latency

[ 250 us (fiber-link) + 1.5 ms (radio-relative) ]

RT Scheduling + Processing Latency

(~1ms)
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Problem Statement

Problem: Starved kthreads lead to cascading lockups (hang)

Goal: OS must remain stable, limiting the fault-domain to the RT app
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Problem Statement Example: Container destroy causes hang
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Problem Statement Example: Container destroy causes hang

Reproducer:
1. Run high prio CPU hog on an isolated CPU
2. Create & destroy a docker container on a housekeeping CPU
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Problem Statement Example: Container destroy causes hang
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Problem Statement Example: Container destroy causes hang

CPU 3 is nohz_full isolated
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Problem Statement Example: Container destroy causes hang

Two runnable tasks on CPU 3:
loop-rt and kworker/3

loop-rt has high RT prio

(SCHED_FIFO/55)
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Problem Statement Example: Container destroy causes hang

loop-rt hogs the CPU
kworker/3 is starved 
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Problem Statement Example: Container destroy causes hang

static int rtnetlink_rcv_msg(…)

{

rtnl_lock();

->flush_all_backlogs();

rtnl_unlock();

}
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Problem Statement Example: Container destroy causes hang

Problem pattern is pervasive in Linux. Ex: ext4, cgroups, ftrace, sysctl etc.

static int rtnetlink_rcv_msg(…)

{

rtnl_lock();

->flush_all_backlogs();

rtnl_unlock();

}
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Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)
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Existing solutions & limitations: stalld
Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)
Ø Critical to RAN deployments to maintain stability 

Limitations of stalld
Limitation Reasons

Scalability Stallds threads run on housekeeping CPUs

Stalld can get starved itself Competes for time on housekeeping CPUs

RT prio stalld is risky – can cause stalls itself!

Unreliable logging systemd-journald can get stuck

Verbose logging gets stalld itself stuck

Trade-off: Response-time vs CPU consumption Per-CPU threads vs single-threaded mode
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And why a kernel-based implementation can meet them
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Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

Ø System hangs are almost always due to starving 

kernel threads

Ø In-kernel starvation avoidance compartmentalizes 

the fault domain

Ø Per-cpu kthreads most susceptible to starvation

Ø Per-cpu based scheduler hooks scale well

Ø Avoid unnecessary periodic monitoring

Ø sched events like wakeup and dequeue equip the 

scheduler to take decisions efficiently

Ø We must be able to prevent starvation under any scenario

Ø Scheduler invocations inevitably offer the opportunity to 

monitor for starvation

Ø Ensure scalability

Ø Monitor and boost efficiently

Ø Guarantee responsiveness

Ø Prevent kthread starvation



32

Design Features of Stall Monitor
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Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

Ø One hrtimer set up (on demand) per cpu to either -
§ Monitor for starving kernel threads (starvation_threshold_time)

OR
§ Track the boosted priority duration (boost_duration_time)

Ø Boost only one starving kthread on a CPU at any given time

Ø Boost or deboost happens in hardirq context of the hrtimer

Ø User defined OS jitter
§ With user configurable starvation_threshold_time, boost_duration_time as well 

as SCHED_DEADLINE parameters
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Implementation of Stall Monitor

Enqueue Task

Hrtimer callback
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Challenges & Open Questions

Ø Priority boosting must happen in hardirq context
• Cannot create more kthreads. Or can we use CPU stopper threads?
• Better alternatives?

Ø Restrict the monitoring and boosting to isolcpus only?

Ø How much latency does it introduce?
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Thank you!
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Additional Data Points

Ø CFS code already has functions to track wait times spent by task on the runqueue –
Ø Handled by update_stats_wait_start() and update_stats_wait_end()
Ø This needs to be added to RT (SCHED_FIFO and SCHED_RR)

Ø __sched_setscheduler invoked by sched_setattr() has checks on pi being invoked from 
interrupt context. This is suspectedly due to rt_mutex_adjust_prio_chain() that enables 
interrupts using raw_spin_unlock_irq(&task->pi_lock) unconditionally


