
Linux Kernel Support for
Kernel Thread Starvation
Avoidance

VMware Photon OS Team

21 Sep 2021

Real-Time MC, Linux Plumbers Conference 2021

Sharan Turlapati (sturlapati@vmware.com)

Srivatsa Bhat (srivatsa@csail.mit.edu)

mailto:sturlapati@vmware.com
mailto:srivatsa@csail.mit.edu

2

Agenda Introduction

Problem Statement

Existing Solutions & Limitations

Design and Implementation of Stall Monitor

Challenges and Feedback

3

Overview of Telco/RAN : Radio Access Network for 5G

Radio Tower

Data Center

Server running Linux PREEMPT_RT

FlexRAN Processing Pipeline

Network Packets

4

Overview of Telco/RAN : Radio Access Network for 5G

Radio Tower

Data Center

Server running Linux PREEMPT_RT

FlexRAN Processing Pipeline

Network Packets

Data transfer latency

[250 us (fiber-link) + 1.5 ms (radio-relative)]

RT Scheduling + Processing Latency

(~1ms)

5

Overview of Telco/RAN : Radio Access Network for 5G

Radio Tower

Data Center

Server running Linux PREEMPT_RT

FlexRAN Processing Pipeline

Network Packets

Fixed total latency budget for packet Tx + processing + ack (< 3ms)

Cyclictest latency < 10us

Data transfer latency

[250 us (fiber-link) + 1.5 ms (radio-relative)]

RT Scheduling + Processing Latency

(~1ms)

6

Problem Statement

7

Problem Statement

L1 app
FIFO/90

8

Problem Statement

L1 app
FIFO/90

k8s ctrl plane
OTHER/0

System
services

(sshd etc)

9

Problem Statement

L1 app
FIFO/90

kthread
FIFO/1

k8s ctrl plane
OTHER/0

System
services

(sshd etc)

10

Problem Statement

Problem: Starved kthreads lead to cascading lockups (hang)

L1 app
FIFO/90

kthread
FIFO/1

k8s ctrl plane
OTHER/0

System
services

(sshd etc)

11

Problem Statement

Problem: Starved kthreads lead to cascading lockups (hang)

Goal: OS must remain stable, limiting the fault-domain to the RT app

L1 app
FIFO/90

kthread
FIFO/1

k8s ctrl plane
OTHER/0

System
services

(sshd etc)

12

Problem Statement Example: Container destroy causes hang

13

Problem Statement Example: Container destroy causes hang

Reproducer:
1. Run high prio CPU hog on an isolated CPU
2. Create & destroy a docker container on a housekeeping CPU

14

Problem Statement Example: Container destroy causes hang

15

Problem Statement Example: Container destroy causes hang

CPU 3 is nohz_full isolated

16

Problem Statement Example: Container destroy causes hang

Two runnable tasks on CPU 3:
loop-rt and kworker/3

loop-rt has high RT prio

(SCHED_FIFO/55)

17

Problem Statement Example: Container destroy causes hang

loop-rt hogs the CPU
kworker/3 is starved

18

Problem Statement Example: Container destroy causes hang

19

Problem Statement Example: Container destroy causes hang

static int rtnetlink_rcv_msg(…)

{

rtnl_lock();

->flush_all_backlogs();

rtnl_unlock();

}

20

Problem Statement Example: Container destroy causes hang

static int rtnetlink_rcv_msg(…)

{

rtnl_lock();

->flush_all_backlogs();

rtnl_unlock();

}

21

Problem Statement Example: Container destroy causes hang

Problem pattern is pervasive in Linux. Ex: ext4, cgroups, ftrace, sysctl etc.

static int rtnetlink_rcv_msg(…)

{

rtnl_lock();

->flush_all_backlogs();

rtnl_unlock();

}

22

Existing solutions & limitations: stalld

23

Existing solutions & limitations: stalld
Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)

24

Existing solutions & limitations: stalld
Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)
Ø Critical to RAN deployments to maintain stability

25

Existing solutions & limitations: stalld
Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)
Ø Critical to RAN deployments to maintain stability

Limitations of stalld

26

Existing solutions & limitations: stalld
Overview of stalld

Ø Monitors for starving tasks + boosts them using SCHED_DEADLINE
Ø Revives system by operating within tolerable OS-jitter (user-configurable)
Ø Critical to RAN deployments to maintain stability

Limitations of stalld
Limitation Reasons

Scalability Stallds threads run on housekeeping CPUs

Stalld can get starved itself Competes for time on housekeeping CPUs

RT prio stalld is risky – can cause stalls itself!

Unreliable logging systemd-journald can get stuck

Verbose logging gets stalld itself stuck

Trade-off: Response-time vs CPU consumption Per-CPU threads vs single-threaded mode

27

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

28

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

Ø System hangs are almost always due to starving

kernel threads

Ø In-kernel starvation avoidance compartmentalizes

the fault domain

Ø Prevent kthread starvation

29

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

Ø System hangs are almost always due to starving

kernel threads

Ø In-kernel starvation avoidance compartmentalizes

the fault domain

Ø Per-cpu kthreads most susceptible to starvation

Ø Per-cpu based scheduler hooks scale well
Ø Ensure scalability

Ø Prevent kthread starvation

30

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

Ø System hangs are almost always due to starving

kernel threads

Ø In-kernel starvation avoidance compartmentalizes

the fault domain

Ø Per-cpu kthreads most susceptible to starvation

Ø Per-cpu based scheduler hooks scale well

Ø Avoid unnecessary periodic monitoring

Ø sched events like wakeup and dequeue equip the

scheduler to take decisions efficiently

Ø Ensure scalability

Ø Monitor and boost efficiently

Ø Prevent kthread starvation

31

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

Ø System hangs are almost always due to starving

kernel threads

Ø In-kernel starvation avoidance compartmentalizes

the fault domain

Ø Per-cpu kthreads most susceptible to starvation

Ø Per-cpu based scheduler hooks scale well

Ø Avoid unnecessary periodic monitoring

Ø sched events like wakeup and dequeue equip the

scheduler to take decisions efficiently

Ø We must be able to prevent starvation under any scenario

Ø Scheduler invocations inevitably offer the opportunity to

monitor for starvation

Ø Ensure scalability

Ø Monitor and boost efficiently

Ø Guarantee responsiveness

Ø Prevent kthread starvation

32

Design Features of Stall Monitor

33

Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

34

Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

Ø One hrtimer set up (on demand) per cpu to either -
§ Monitor for starving kernel threads (starvation_threshold_time)

OR
§ Track the boosted priority duration (boost_duration_time)

35

Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

Ø One hrtimer set up (on demand) per cpu to either -
§ Monitor for starving kernel threads (starvation_threshold_time)

OR
§ Track the boosted priority duration (boost_duration_time)

Ø Boost only one starving kthread on a CPU at any given time

36

Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

Ø One hrtimer set up (on demand) per cpu to either -
§ Monitor for starving kernel threads (starvation_threshold_time)

OR
§ Track the boosted priority duration (boost_duration_time)

Ø Boost only one starving kthread on a CPU at any given time

Ø Boost or deboost happens in hardirq context of the hrtimer

37

Design Features of Stall Monitor

Ø Each CPU keeps track of starving kernel threads meant to run only on that CPU

Ø One hrtimer set up (on demand) per cpu to either -
§ Monitor for starving kernel threads (starvation_threshold_time)

OR
§ Track the boosted priority duration (boost_duration_time)

Ø Boost only one starving kthread on a CPU at any given time

Ø Boost or deboost happens in hardirq context of the hrtimer

Ø User defined OS jitter
§ With user configurable starvation_threshold_time, boost_duration_time as well

as SCHED_DEADLINE parameters

38

Implementation of Stall Monitor

Enqueue Task

Hrtimer callback

39

Challenges & Open Questions

Ø Priority boosting must happen in hardirq context
• Cannot create more kthreads. Or can we use CPU stopper threads?
• Better alternatives?

Ø Restrict the monitoring and boosting to isolcpus only?

Ø How much latency does it introduce?

40

Thank you!

41

Additional Data Points

Ø CFS code already has functions to track wait times spent by task on the runqueue –
Ø Handled by update_stats_wait_start() and update_stats_wait_end()
Ø This needs to be added to RT (SCHED_FIFO and SCHED_RR)

Ø __sched_setscheduler invoked by sched_setattr() has checks on pi being invoked from
interrupt context. This is suspectedly due to rt_mutex_adjust_prio_chain() that enables
interrupts using raw_spin_unlock_irq(&task->pi_lock) unconditionally

