\.‘ Red Hat
Enterprise Linux

Rtla: an interface for osnoise/timerlat
tracers

Daniel Bristot de Oliveira

State of art for testing/benchmark -rt kernel

e Nowadays, we use a set of blackbox tools that mimics a workload
o Periodic like cyclictest
o Polling like sysjitter/oslat This topic is the
continuation of a topic
e If abad value happens, you need to start getting the hands dirt
o The developer needs to set up a trace session manually
m Hard to do when you have someone else operating the machine
o Manual interpretation of a lot of data
m Speculation goes on (many times misleading)

from last year, but

progress was made!

e You never know if the problem you faced in the first place is the same you are
seeing while tracing
o Thatis especially hard when the target values are tight, and a lot of
information is traced

e After 10+ years doing this, the trace became a mechanical thing:
o lIrgevents, sched: events, compute deltas.

Red Hat

osnoise and timerlat tracers

osnoise and timerlat are kernel tracers that also dispatches the workload
o The workload runs in the kernel:
m osnoise: A busy loop kernel thread that reads time() in a loop
e Reports problem when time()' - time() > threshold - aka noise.
m timerlat: A periodic task that is awakened by an hrtimer
e Reports IRQ latency and Thread latency

The tracers provided a new set of tracepoints that automatize the trace:
e osnoise:nmi_noise/irq_noise/softirg_noise/thread_noise:
e Report the interference of these tasks to the tracer workload
e Account the interference and report net values of it.
e The osnoise: tracepoints works by hooking to existing events
e Instead of tracing irg_entry & irg_exit, osnoise:irg_noise reports the delta

The workload and the trace are synchronized
e The workload can have atomic access to information collected by the trace
e E.g., osnoise workload also reports the $ of interference that happens between two time() reads

[
[
[
#
#
#
#
#
#
#
#
#
#

AN NN ANANANANNA

TASK-

L2
>
>
>
L2
>
>
>

PID
|

859
860
861
862
863
864
865
866

root@f32 ~]# cd /sys/kernel/tracing/

root@f32 tracingl]# echo osnoise > current_tracer
root@f32 tracingl# cat trace

tracer: osnoise

=> irgs-off

osnoise tracer example

----=> need-resched
/ _---=> hardirq/softirqg

TIMESTAMP

81
81
81
81
81
81
81
81

root@f32 ~J]# cd /sys/kernel/tracing/

root@f32 tracingl]# echo osnoise > current_tracer

|

.637220:
.638154 :
.638193:
.638242:
.638260:
.638286:
.638302 :
.638326:

root@f32 tracingl]# echo osnoise > set_event

root@f32 tracingl]# cat trace

o]
osnoise/8-960
0osnoise/8-961
osnoise/8-961

migration/8-54
osnoise/8-961

5789
5789
5789
5789
5789

.857530:
.857532:
.858408:
.858413:
.858413:

_--=> preempt-depth

RUNTIME
IN US
|
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000

[

[

[]

[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[]

[

NOISE
IN US
|

190
656
5675
125
1721
263
109
7816

MAX

SINGLE

% OF CPU NOISE
AVAILABLE 1IN US

| |
99.98100 9

99.93440 74
99.43250 202
99.98750 45
99.82790 168
99.97370 57
99.98910 21
99.21840 107

Interference counters:

OO O—

irg_noise: local_timer:236 start 5789.857527123 duration 1867 ns
irg_noise: local_timer:236 start 5789.857529929 duration 1845 ns
irg_noise: local_timer:236 start 5789.858404871 duration 2848 ns
thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
sample_threshold: start 5789.858404555 duration 8812 ns interferences 2

SIRQ THREAD

|
18
16
25
23
49
26
18
39

|
1

3
21
0
41
2
1
19

rtla: an interface for the osnoise/timerlat tracers

timerlat and osnoise work fine as tracers

But they could also work as white box tests:
o Report the values as a benchmark tool
o Report the tracer if unexpected values are hit
m Allin the same session!

With a more intuitive interface
o The tracers have a nice list of config options:
m Itis possible to config runtime/period, CPU mask, ...

o Some other things can be done automatically in user-space:

m Setting priority to the tracer workload
m Saving trace to a file

Demo:
o https://www.youtube.com/watch?v=fR4tjel4rbs

rtla: the code

e This code is fresh!
o osnoise/timerlat available since 5.14
o rtla RFC sentlast Friday (conference driven development)
m [RFC OO/19]1 RTLA: An interface for osnoise/timerlat tracers
e https://lore.kernel.org/lkml/cover.1631889858.qit.bristot@kernel.org/

e |tisinC
o Uses libtracefs
o Although itis not yet using eBPF, it will likely be used soon.
m |just did not have a reason for using it in this tool yet.
m |like eBPF!

e The tracers use rtsl code (presented last year)
o rtla will also be the interface for rtsl
But rtsl was postponed because it will require some more kernel code
And these two tools are needed now
There are more tools in the pipeline
Bonus: the RV interface in user-space will re-use lots of this code

O O O O

https://lore.kernel.org/lkml/cover.1631889858.git.bristot@kernel.org/#r
https://lore.kernel.org/lkml/cover.1631889858.git.bristot@kernel.org/

Discussion time

Request
o libtracefs:
m A method to collect trace without consuming it from the circular buffer
m A method to save trace to afile
e | did one myself, but it would be better to have it in the library
e |see that trace-cmd library will allow that to .dat file, right?
o Isit possible to collect data
m A method to parse histogram datain C
e |saw athread from Steven, but it was missing a .| file
m Min, Max, Avg, and Over values for kernel histogram
o How do | connect these tools with rteval?
o How do | connect it with testing tools like LAVA?

What do you all think?

What feature would you like to see?

