

Daniel Bristot de Oliveira

Rtla: an interface for osnoise/timerlat
tracers

1

State of art for testing/benchmark -rt kernel

2

● Nowadays, we use a set of blackbox tools that mimics a workload
○ Periodic like cyclictest
○ Polling like sysjitter/oslat

● If a bad value happens, you need to start getting the hands dirt
○ The developer needs to set up a trace session manually

■ Hard to do when you have someone else operating the machine
○ Manual interpretation of a lot of data

■ Speculation goes on (many times misleading)

● You never know if the problem you faced in the first place is the same you are
seeing while tracing
○ That is especially hard when the target values are tight, and a lot of

information is traced

● After 10+ years doing this, the trace became a mechanical thing:
○ Irq events, sched: events, compute deltas.

This topic is the

continuation of a topic

from last year, but

progress was made!

 3

● osnoise and timerlat are kernel tracers that also dispatches the workload
○ The workload runs in the kernel:

■ osnoise: A busy loop kernel thread that reads time() in a loop
● Reports problem when time()' - time() > threshold - aka noise.

■ timerlat: A periodic task that is awakened by an hrtimer
● Reports IRQ latency and Thread latency

● The tracers provided a new set of tracepoints that automatize the trace:
● osnoise:nmi_noise/irq_noise/softirq_noise/thread_noise:

● Report the interference of these tasks to the tracer workload
● Account the interference and report net values of it.

● The osnoise: tracepoints works by hooking to existing events
● Instead of tracing irq_entry & irq_exit, osnoise:irq_noise reports the delta

● The workload and the trace are synchronized
● The workload can have atomic access to information collected by the trace

● E.g., osnoise workload also reports the $ of interference that happens between two time() reads

osnoise and timerlat tracers

 4

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# cat trace
tracer: osnoise
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth MAX
|| / SINGLE Interference counters:
|||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
| | | |||| | | | | | | | | | |
 <...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
 <...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
 <...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
 <...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
 <...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
 <...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
 <...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
 <...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[root@f32 tracing]# cat trace
[...]
 osnoise/8-960 [007] d.h. 5789.857530: irq_noise: local_timer:236 start 5789.857527123 duration 1867 ns
 osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
 osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
 osnoise/8-961 [008] 5789.858413: sample_threshold: start 5789.858404555 duration 8812 ns interferences 2

osnoise tracer example

 5

● timerlat and osnoise work fine as tracers

● But they could also work as white box tests:
○ Report the values as a benchmark tool
○ Report the tracer if unexpected values are hit

■ All in the same session!

● With a more intuitive interface
○ The tracers have a nice list of config options:

■ It is possible to config runtime/period, CPU mask, ...
○ Some other things can be done automatically in user-space:

■ Setting priority to the tracer workload
■ Saving trace to a file

● Demo:
○ https://www.youtube.com/watch?v=fR4tjeI4rbs

rtla: an interface for the osnoise/timerlat tracers

 6

● This code is fresh!
○ osnoise/timerlat available since 5.14
○ rtla RFC sent last Friday (conference driven development)

■ [RFC 00/19] RTLA: An interface for osnoise/timerlat tracers
● https://lore.kernel.org/lkml/cover.1631889858.git.bristot@kernel.org/

● It is in C
○ Uses libtracefs
○ Although it is not yet using eBPF, it will likely be used soon.

■ I just did not have a reason for using it in this tool yet.
■ I like eBPF!

● The tracers use rtsl code (presented last year)
○ rtla will also be the interface for rtsl
○ But rtsl was postponed because it will require some more kernel code
○ And these two tools are needed now
○ There are more tools in the pipeline
○ Bonus: the RV interface in user-space will re-use lots of this code

rtla: the code

https://lore.kernel.org/lkml/cover.1631889858.git.bristot@kernel.org/#r
https://lore.kernel.org/lkml/cover.1631889858.git.bristot@kernel.org/

 7

● Request
○ libtracefs:

■ A method to collect trace without consuming it from the circular buffer
■ A method to save trace to a file

● I did one myself, but it would be better to have it in the library
● I see that trace-cmd library will allow that to .dat file, right?

○ Is it possible to collect data
■ A method to parse histogram data in C

● I saw a thread from Steven, but it was missing a .l file
■ Min, Max, Avg, and Over values for kernel histogram

○ How do I connect these tools with rteval?
○ How do I connect it with testing tools like LAVA?

● What do you all think?

● What feature would you like to see?

Discussion time

