Detecting semantic bugs

using differential fuzzing

Mara Mihali
Linux Plumbers 2021

Many classes of bugs are easy to detect...

Many classes of bugs are easy to detect...

e cause assertion failures
e crash the system
e trigger other forms of undefined behaviour

o detectable using dynamic or static analysis tools (e.g. KASAN)

Many classes of bugs are easy to detect...

e cause assertion failures
e crash the system
e trigger other forms of undefined behaviour

o detectable using dynamic or static analysis tools (e.g. KASAN)
e Why are semantic bugs different?

o make program operate incorrectly, possibly producing unintended output

Many classes of bugs are easy to detect...

e cause assertion failures
e crash the system
e trigger other forms of undefined behaviour
o detectable using dynamic or static analysis tools (e.g. KASAN)
e Why are semantic bugs different?
o make program operate incorrectly, possibly producing unintended output

o but might not crash the program or trigger assertion failures

Many classes of bugs are easy to detect...

e cause assertion failures
e crash the system
e trigger other forms of undefined behaviour
o detectable using dynamic or static analysis tools (e.g. KASAN)
e Why are semantic bugs different?
o make program operate incorrectly, possibly producing unintended output
o but might not crash the program or trigger assertion failures
m not detectable using existing analysis tools

m require the developer to manually inspect and test the program

How can we find semantic bugs?

Testing a system’s specification

e a specification formalises the system’s intended behaviour

e this could be used to write tests in order to detect semantic bugs

Testing a system’s specification

e a specification formalises the system’s intended behaviour

e this could be used to write tests in order to detect semantic bugs

e gets more difficult to achieve and maintain as the size of the system increases

Testing a system’s specification

e a specification formalises the system’s intended behaviour

e this could be used to write tests in order to detect semantic bugs
e gets more difficult to achieve and maintain as the size of the system increases

e some existing, large systems have no centralised specification

Testing a system’s specification

e a specification formalises the system’s intended behaviour

e this could be used to write tests in order to detect semantic bugs
e gets more difficult to achieve and maintain as the size of the system increases

e some existing, large systems have no centralised specification

° Linux kernel

o specification = documentation + man pages + implied expectations of user programs

Testing a system’s specification

e a specification formalises the system’s intended behaviour

e this could be used to write tests in order to detect semantic bugs

e gets more difficult to achieve and maintain as the size of the system increases

e some existing, large systems have no centralised specification

e Linux kernel
o specification = documentation + man pages + implied expectations of user programs
o test suites available to detect regressions

m but require significant amount of engineering effort to extend and maintain

Differential Fuzzing

e automates detection of semantic bugs
e provides same input to different implementations of the same system and cross-compares resulting behaviour

e if systems disagree, at least one of them is wrong

Differential Fuzzing

e automates detection of semantic bugs
e provides same input to different implementations of the same system and cross-compares resulting behaviour

e if systems disagree, at least one of them is wrong
e Differential fuzzing for Linux Kernel

o non-trivial, several technical challenges involved

Differential Fuzzing

e automates detection of semantic bugs
e provides same input to different implementations of the same system and cross-compares resulting behaviour

e if systems disagree, at least one of them is wrong
e Differential fuzzing for Linux Kernel

o non-trivial, several technical challenges involved

] kernel nondeterminism

Differential Fuzzing

automates detection of semantic bugs

provides same input to different implementations of the same system and cross-compares resulting behaviour

if systems disagree, at least one of them is wrong

Differential fuzzing for Linux Kernel
o non-trivial, several technical challenges involved
m kernel nondeterminism
e programs with non-deterministic behaviour e background activity
e concurrency e timing dependencies

e resource exhaustion e global accumulated state

Differential Fuzzing

automates detection of semantic bugs

provides same input to different implementations of the same system and cross-compares resulting behaviour

if systems disagree, at least one of them is wrong

Differential fuzzing for Linux Kernel

o non-trivial, several technical challenges involved

] kernel nondeterminism

e programs with non-deterministic behaviour e background activity
e concurrency e timing dependencies
e resource exhaustion e global accumulated state

m implementation-defined behaviour

Differential Fuzzing

automates detection of semantic bugs

provides same input to different implementations of the same system and cross-compares resulting behaviour

if systems disagree, at least one of them is wrong

Differential fuzzing for Linux Kernel

o non-trivial, several technical challenges involved

] kernel nondeterminism

e programs with non-deterministic behaviour e background activity
e concurrency e timing dependencies
e resource exhaustion e global accumulated state

m implementation-defined behaviour

m state space of the input is unbounded

Comparison Candidates

e LTS vs mainline
o prevent bugs from reaching the next release

different LTS releases

o neighbouring: not many intentional differences but most bugs are present in both versions

o distant: need a mechanism to whitelist intentional differences

minor LTS updates

o away to ensure bugs were actually fixed by the update

different kernel implementation (Linux vs gVisor)
o could uncover real semantic bugs

o however, many false positives (due to intentional differences) that need to be accounted for

syz-verifier

e differential fuzzing tool for the Linux kernel
e part of the syzkaller project, additionally providing unsupervised coverage-guided kernel fuzzing
e generates a continuous stream of random programs (i.e. sequences of syscalls)
e dispatches the programs for execution on different versions of the Linux kernel
e gathers and verifies whether the returned results are the same for all kernels
e for each syscall, syz-verifier reports:
o errno
o whether the VM crashed executing the program

e in cases of mismatches, syz-verifier creates an execution report for the program for further inspection

Architecture Overview

Host Level

Guest Level

Architecture Overview

syz-verifier

main
utility

Host Level

Guest Level

Architecture Overview

syz-verifier

main
utility

VM management Host Level

Guest Level

Kernel

virtual machine

Architecture Overview

VM management

syz-verifier

main
utility

programs

Runner

virtual machine

Kernel

Host Level

Guest Level

Architecture Overview

VM management

syz-verifier

main
utility

programs

Runner

i

program
executor

virtual machine

Kernel

Host Level

Guest Level

Architecture Overview

VM management

syz-verifier

main
utility

programs

inpyt
Runner | program

executor

results

syscalls

Kernel

virtual machine

Host Level

Guest Level

Architecture Overview

VM management

syz-verifier

theg
ves“
main
utility
programs results
inpyt
Runner ::::::::::: program
Pesults executor
results syscalls
Kernel

virtual machine

Host Level

Guest Level

Architecture Overview

syz-verifier

if mismatch reports
Verifier workdir <::::j o
report statistics
main
utility stats persistent storage
Statistics
Host Level
VM management programs results ost Leve
Guest Level
inpyt
Runner ::::::::::: program
Presujts executor
results syscalls
Kernel

virtual machine

Bisecting Mismatches

io_uring setup

io_uring setup

e 0Old Kernel (v5.10.47) : EBADF (bad file descriptor)

e New Kernel (v5.13): ENXIO (no such device or address)

io_uring setup

Old Kernel (v5.10.47) : EBADF (bad file descriptor)

New Kernel (v5.13): ENXIO (no such device or address)

io_uring: disable io-wq attaching

Moving towards making the io_wqg per ring per task, so we can't really
share it between rings. Which is fine, since we've now dropped some
of that fat from it.

Retain compatibility with how attaching works, so that any attempt to
attach to an fd that doesn't exist, or isn't an io_uring fd, will fail

like it did before.

- f = fdget(p->wq_fd);
- if (!f.file)
- return -EBADF;

f = fdget(p->wq_fd);
if (!f.file)
return -ENXIO;

+

io_uring setup

Old Kernel (v5.10.47) : EBADF (bad file descriptor)

New Kernel (v5.13): ENXIO (no such device or address)

io_uring: disable io-wq attaching

Moving towards making the io_wg per ring per task, so we can't really
share it between rings. Which is fine, since we've now dropped some
of that fat from it.

Retain compatibility with how attaching works, so that any attempt to
attach to an fd that doesn't exist, or isn't an io_uring fd, will fail

like it did before.

- f = fdget(p->wq_fd);

= if (!f.file .

- { retﬂrn -EBADF: Change not documented in the
commit description

f = fdget(p->wq_fd);
if (!f.file)
return -ENXIO;

perf_event open

Google

perf_event open

e OldKernel (v5.12) : E2BIG (argument list too long)

e New Kernel (v5.13): EINVAL (invalid argument)

perf_event open

Old Kernel (v5.12) : E2BIG (argument list too long)
e New Kernel (v5.13): EINVAL (invalid argument)

author Marco Elver <elver@google.com> 2021-04-08 12:36:01 +0200

perf: Add support for SIGTRAP on perf events

Adds bit perf_event_attr::sigtrap, which can be set to cause events to
send SIGTRAP (with si_code TRAP_PERF) to the task where the event

if (attr->sigtrap && 'attr->remove_on_exec)
return -EINVAL;

+

Google

Fixing sources of nondeterminism

Fixing sources of nondeterminism

° favoring single-threaded mode in program execution
o avoids a system call failing because a previous one that it depends on hasn’t executed yet

o e.g.calingwrite before calling open on a file descriptor

Fixing sources of nondeterminism

° favoring single-threaded mode in program execution
o avoids a system call failing because a previous one that it depends on hasn’t executed yet

o e.g.calingwrite before calling open on a file descriptor

e ensure initial state for each executed program is identical

o avoids false positives occuring because of accumulated hidden state

Fixing sources of nondeterminism

° favoring single-threaded mode in program execution
o avoids a system call failing because a previous one that it depends on hasn’t executed yet

o e.g.calingwrite before calling open on a file descriptor

e ensure initial state for each executed program is identical

o avoids false positives occuring because of accumulated hidden state

e rerun programs that returned mismatches
o eliminates flaky mismatches caused by
m the current state of the system

m background activity

Next Potential Steps

e research and eliminate other sources of false positives

e automatic bisection

e extending the return state of each system call to include information about
o memory
o registers
o contents of disk

o privileges assigned to system call

e comparing Linux with other kernels (e.g. *“BSD, gVisor) on a subset of syscalls

e creating a model of the Linux kernel to compare against

Summary

e differential fuzzing automates the process of finding semantic bugs
e syz-verifier is a differential fuzzing prototype for the Linux kernel

e repository and documentation: https://github.com/google/syzkaller/blob/master/docs/syz_verifier.md

https://github.com/google/syzkaller/blob/master/docs/syz_verifier.md

