
Integrating KDBus in Android™

Pierre Langlois <pierre.langlois@arm.com>

1

Why work on Binder and KDBus?

High level thoughts:

Could we have the same code running on distros and Android™?

Can Android gain from KDBus?

Are we duplicating work?

But also:

Binder is used everywhere in Android.

KDBus can potentially become widely used.

We can learn a lot.

2

What we want to achieve.

Investigate KDBus as a replacement for Binder:

Understand if it can be done.

Build a proof-of-concept.

Identify potential blockers and difficult problems.

Things we haven’t looked at:

Any sort of measurement / profiling.

Comparing security mechanisms.

3

Our work in a nutshell
libbinder provides the API to the rest of the system.

4

Our work in a nutshell
Let’s make a drop-in replacement which talks to KDBus!

5

Features covered here

Abstraction around services.

Services discovery.

Remote procedure calls.

Thread pool management.

Marshalling.

6

Agenda

Binder API: Remote interfaces and objects

Notes about Binder internals

Overview of KDBus

Implementing Binder’s API with KDBus

Current state and future work

7

Binder API: Remote interfaces and objects

8

Binder is heavily object oriented

A service is defined by an interface.

We use a service with an instance object.

We issue transactions by calling methods.

Service instances can be passed around.

A service has a lifetime.

We refer to these special objects as Binders.

9

Binder: Remote interfaces in C++

A system service provides an interface:

class IAdder : IInterface {
enum Code {
ADD

};

virtual int add(int a, int b) = 0;
};

10

Binder: Remote calls
No need to know where the transaction will be handled, remotely or locally:

sp<IBinder> proxy = ...
sp<IAdder> service = interface_cast<IAdder>(proxy);

int answer = service->add(20, 22);

11

Binder: Servers and clients

Or Proxies and Stubs.

Remote proxy:

class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
// Issue a blocking transaction.
return result;

}
};

Native stub:

class BnAdder : BnInterface<IAdder> {
int add(int a, int b) override {
return a + b;

}
};

12

Binder object abstraction: Remote proxy

Package the data.

Send it with code ADD.

class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
Parcel data;
Parcel reply;

data.writeInt(a);
data.writeInt(b);

remote()->transact(ADD, data, &reply);

return reply.readInt();
}

};
13

Binder object abstraction: Remote proxy

Package the data.

Send it with code ADD.

class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
Parcel data;
Parcel reply;

data.writeInt(a);
data.writeInt(b);

remote()->transact(ADD, data, &reply);

return reply.readInt();
}

};
14

Binder object abstraction: Remote proxy

Package the data.

Send it with code ADD.
class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
Parcel data;
Parcel reply;

data.writeInt(a);
data.writeInt(b);

remote()->transact(ADD, data, &reply);

return reply.readInt();
}

};
15

Binder object abstraction: Native stub

Implements a callback on request.

Interpret the transaction code.

Unpackage incoming data.

Native call.

Package the reply.

class BnAdder : BnInterface<IAdder> {

int add(int a, int b) override {

return a + b;

}

status_t onTransact(uint32_t code,

const Parcel& data,

Parcel *reply) override {

switch (code) {

case ADD: {

int a = data.readInt();

int b = data.readInt();

int result = add(a, b);

reply->writeInt(result);

return NO_ERROR;

}

}

}

}
16

Binder object abstraction: Native stub

Implements a callback on request.

Interpret the transaction code.

Unpackage incoming data.

Native call.

Package the reply.

class BnAdder : BnInterface<IAdder> {

int add(int a, int b) override {

return a + b;

}

status_t onTransact(uint32_t code,

const Parcel& data,

Parcel *reply) override {

switch (code) {

case ADD: {

int a = data.readInt();

int b = data.readInt();

int result = add(a, b);

reply->writeInt(result);

return NO_ERROR;

}

}

}

}
17

Binder object abstraction: Native stub

Implements a callback on request.

Interpret the transaction code.

Unpackage incoming data.

Native call.

Package the reply.

class BnAdder : BnInterface<IAdder> {

int add(int a, int b) override {

return a + b;

}

status_t onTransact(uint32_t code,

const Parcel& data,

Parcel *reply) override {

switch (code) {

case ADD: {

int a = data.readInt();

int b = data.readInt();

int result = add(a, b);

reply->writeInt(result);

return NO_ERROR;

}

}

}

}
18

Binder object abstraction: Native stub

Implements a callback on request.

Interpret the transaction code.

Unpackage incoming data.

Native call.

Package the reply.

class BnAdder : BnInterface<IAdder> {

int add(int a, int b) override {

return a + b;

}

status_t onTransact(uint32_t code,

const Parcel& data,

Parcel *reply) override {

switch (code) {

case ADD: {

int a = data.readInt();

int b = data.readInt();

int result = add(a, b);

reply->writeInt(result);

return NO_ERROR;

}

}

}

}
19

Binder object abstraction: Native stub

Implements a callback on request.

Interpret the transaction code.

Unpackage incoming data.

Native call.

Package the reply.

class BnAdder : BnInterface<IAdder> {

int add(int a, int b) override {

return a + b;

}

status_t onTransact(uint32_t code,

const Parcel& data,

Parcel *reply) override {

switch (code) {

case ADD: {

int a = data.readInt();

int b = data.readInt();

int result = add(a, b);

reply->writeInt(result);

return NO_ERROR;

}

}

}

}
20

Binder object abstraction: Remote proxy

Package the data.

Send it with code ADD.

Unpackage the reply.

class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
Parcel data;
Parcel reply;

data.writeInt(a);
data.writeInt(b);

remote()->transact(ADD, data, &reply);

return reply.readInt();
}

};
21

Binder object abstraction: Remote proxy

Package the data.

Send it with code ADD.
Unpackage the reply.

class BpAdder : BpInterface<IAdder> {
int add(int a, int b) override {
Parcel data;
Parcel reply;

data.writeInt(a);
data.writeInt(b);

remote()->transact(ADD, data, &reply);

return reply.readInt();
}

};
22

Binder: Searching and registering services

We have a special and unique Binder object for this: ServiceManager.

Accessing this special object:

sp<IServiceManager> service_manager = defaultServiceManager();

Registering our new service with it:

sp<IBinder> adder = new BnAdder();
service_manager->addService("org.compute.adder", adder);

Finding the service:

sp<IBinder> adder = service_manager->getService("org.compute.adder");

23

Outline

This was the Binder API in a nutshell.

Object abstraction.

Transaction codes.

Marshalling different kinds of data.

A special process keeps track of services.

This API is used by services only. We could change it!

24

Notes about Binder internals

25

Binder kernel driver

Kernel driver export a device node: /dev/binder and implements a two-way protocol:

BC_∗ ↔ BR_∗

Maintain per-process memory pools.

Manages worker threads.

Dispatch data from one process to another.

26

Binder kernel driver: Managing a thread pool
Worker threads are managed by the kernel.

27

Binder kernel driver overview: Object lifetime

The kernel keeps track of who uses a service with reference counting.

BC_ACQUIRE / BC_RELEASE: Acquire and release a service.

BC_REQUEST_DEATH_NOTIFICATION / BC_CLEAR_DEATH_NOTIFICATION /
BR_DEAD_BINDER: Manage the death of services.

28

ServiceManager

A special user-space process keeps track of services.

All clients register themselves with it.

There can only be one.

The kernel driver implements a BINDER_SET_CONTEXT_MGR ioctl to identify this
special service.

29

Outline: Binder internals

This is all abstracted in libbinder:

Binder object abstraction.

Marshalling: Packaging data into Parcels.

Per process thread pool for handling incoming transactions.

Accessing ServiceManager.

We can see the kernel driver and Binder’s API are tightly coupled.

30

Overview of KDBus

31

KDBus’s kernel interface

$ mount -t kdbusfs kdbusfs /sys/fs/kdbus
$ tree /sys/fs/kdbus

/sys/fs/kdbus/ ; mount-point
|-- 0-system ; bus directory
| |-- bus ; default endpoint
| `-- 1017-custom ; custom endpoint
|-- 1000-user ; bus directory
| |-- bus ; default endpoint
| |-- 1000-service-A ; custom endpoint
| `-- 1000-service-B ; custom endpoint
`-- control ; control file

32

KDBus: Overview

We built a small abstraction library around this and will use it in this talk.

33

Hello KDBus

Creating a bus:
We hold a file descriptor open for the lifetime of the bus.

// Running as PID 42:
auto bus = Bus::make("myname");
assert(bus->name == "42-myname")

Connecting to a bus:
Each connection to the bus gets assigned a unique 64 bit ID.

auto c = Connection::hello("42-myname");

We can also give it a unique name in the bus’s name registry.

c->acquire_name("foo.bar");

34

Finding other Connections

Connections can probe the bus:

enum ListFlags {
Unique, // Get all Connection IDs.
Names, // Get all Connection IDs with a name.
Queued, // Get all Connection IDs waiting for a name.

};

auto c = Connection::hello("42-myname");
for (const auto& name : c->list(Names)) {
// (...)

}

35

Items

Everything sent to/from KDBus is an Item:

Plain old data: copied, shared with memfd or file descriptor.

auto payload = ItemPayloadVec(&some_data, sizeof(some_data));

Identifiers: Name of a bus, a connection, ...etc.

auto name = ItemName("org.compute.name");

Misc information: Timestamps, credentials, capabilities ...etc.

Notifications from the kernel: Dead Connection, new Connection, timeout ...etc.

36

Messages

They have a destination and a source.

Messages are asynchronous by default but...

They can expect a reply, identified with a cookie.

Messages contain a chain of Items.

MessageSync message(42, // Source ID.
12, // Destination ID.
123456789, // Unique cookie.
1000, // One second timeout.
ItemPayloadVec(&some_data, sizeof(some_data)),
ItemPayloadVec(&more_data, sizeof(more_data)));

37

Subscribing to notifications

KDBus gives us Items describing rules that can be bundled together to form a match.

For example, if we apply the following rules:

KDBUS_ITEM_NAME_ADD
KDBUS_ITEM_NAME_REMOVE

A given connection will receive messages every time a connection acquires or releases a well-known
name.

38

Outline

KDBus gives us a transport layer.

Provides synchronisation guarantees.

Notification and monitoring.

Name registry.

We have all we need to implement transactions!

... KDBus will not manage threads for us.

39

Implementing libbinder’s API with KDBus

40

Introducing libkdbinder

41

Registering a service with KDBus

Binder relies on the ServiceManager, we don’t!

sp<IServiceManager> service_manager = defaultServiceManager();

Create a per process object implementing the ServiceManager API.

sp<IBinder> adder = service_manager->getService("org.compute.adder");

Send a list command to KDBus and find the Connection with this name.

Create a Binder object around this Connection’s ID.

42

Registering a service with KDBus

sp<IBinder> adder = new BnAdder();
service_manager->addService("org.compute.adder", adder);

Create a Connection to KDBus with a well-known name.

Register it in a local per process table:

Connection to KDBus Binder object
”org.compute.adder” sp<IBinder> adder
... ...

43

Handling requests: Per process thread pool
Reminder: The Binder driver manages threads for us.

44

Handling requests: Per process thread pool
KDBus does not, let’s simply spawn ; threads.

45

Handling requests: Per process thread pool
And let them handle transactions concurrently.

46

Final step: Issuing a Binder transaction with KDBus

We have a Parcel and a transaction code as input.

Create a KDBus synchronous Message:

We get a Message back:

Unpack the Item in a Parcel

47

Current state and future work

48

Covering a subset a Binder with tests

We have a working proof-of-concept for isolated test cases.

BinderAddInts benchmark functional.

binderLibTests test cases pass with KDBus.

It’s too early for optimisations and profiling.

49

Future work: memfd as a replacement for ashmem?

KDBus does not recognize ashmem file descriptors.

Is replacing ashmem with memfd possible in Android™?

KDBus forces us to pass sealed memfd descriptors, is it OK?

Should KDBus support ashmem or should Binder support memfd.

We need to pass big amount of data �frames�. This is a potential blocker.

50

Future work: Boot2anim?

The next milestone will be displaying the Android™logo with KDBus.

Enough of the API is implemented to build SurfaceFlinger!
ashmem is a blocker.

Other issues will likely be uncovered.

51

Future work: find better ways!

Our current implementation is purposely simple.

Using more than one bus?

Should services be connections or endpoints?

We need to look at security as soon as possible.

... etc.

52

Conclusion: Can it work?

Short answer is: Yes of course!

Long answer:

Feature parity is feasible.

It will involve implementing Binder specific features in user-space.

Be at least as efficient as Binder.
→ It needs more work and investigation.

53

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited �or its subsidiaries� in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

54

Backup slides

55

KDBus: Asynchronous example

// Create two clients on the bus
auto c1 = Connection::hello("42-myname", "a-client");
auto c2 = Connection::hello("42-myname", "another-client");

// Data to send across the bus.
uint8_t data = 42;

// Create a message from c1 to c2.
Message msg(c2->id, c1->id, 0, 0, ItemPayloadVec(&data, sizeof(uint8_t)));

// Queue the message on c2's memory pool.
c1->queue_message(msg);

// Block until a message is on c2's pool.
auto reply = c2->dequeue_message_blocking();

56

KDBus: Synchronous example
auto c1 = Connection::hello("42-myname", "a-client");

auto c2 = Connection::hello("42-myname", "another-client");

uint8_t data_in = 42;

// We pass this value to identify the transaction.

uint64_t cookie = 123456789;

// Create a server thread. Gets a message and replies 1.

std::thread server([&c1, &c2] {

uint8_t data_out = 1;

auto reply = c2->dequeue_message_blocking();

MessageReply message(c1->id, c2->id, reply.cookie, ItemPayloadVec(&data_out, sizeof(uint8_t)));

c2->reply(message);

});

MessageSync message(c2->id, c1->id, cookie, 1000, ItemPayloadVec(&data_in, sizeof(uint8_t)));

auto reply = c1->transact(message);

57

Handling requests: Worker thread execution
We have done this the simplest we could think of:

1: for all entry in the service table do
2: entry← Copy entry, protected by a per process mutex.
3: message← Dequeue a message from the connection’s memory pool.
4: if not time out then
5: cookie← Read cookie value from message.
6: code← Read transaction code from message.
7: Parcel in← Read data from message.
8: Parcel out← Call the Binder object with code and in.
9: message←Write out into a KDBus message.
10: Send the msg reply with the same cookie.
11: end if
12: end for

58

Sending a request: Parcel in / Parcel out

We have a remote Binder object→ we know the KDBus connection ID.

1: connection← Create a new temporary connection to the bus.
2: cookie← Create a unique transaction cookie.
3: item_code← Bundle the transaction code into an item.
4: item_data← Bundle the in Parcel into an item.
5: message← Create a synchronous message with item_code and item_data.
6: reply← Send message with cookie. Receive another message back.
7: out← Copy the reply message data.

59

Packaging data into Parcels

Just a matter of copying data from KDBus’s Items to Binder’s Parcels... Except we can send/receive
Binder objects!

Example taken for SurfaceFlinger:

virtual sp<ISurfaceComposerClient> createConnection()
{
Parcel data, reply;
remote()->transact(BnSurfaceComposer::CREATE_CONNECTION, data, &reply);
return interface_cast<ISurfaceComposerClient>(reply.readStrongBinder());

}

60

Packaging Binder objects into Parcels

We can pass Binder objects by sending their KDBus connection ID over the bus.

Sending a service reference:

status_t Parcel::writeStrongBinder(const sp<IBinder>& val);

Remote: send the connection ID.
Local: get the connection ID from the table and send it.

Receiving a service reference:

sp<IBinder> Parcel::readStrongBinder() const;

Remote: create a new remote Binder object from the ID.
Local: return the local Binder object with this ID.

61

Binder: Getting notified when a service dies

A client can register an object with a remote Binder:

class WhatToDo : public IBinder::DeathRecipient {
public:
virtual void binderDied(const wp<IBinder>& who) override {
// Complain.

}
};

If the service dies, the binderDied method will be called.

sp<IBinder> adder = service_manager->getService("org.compute.adder");
adder->linkToDeath(new WhatToDo);

62

Binder: linkToDeath
Binder defines a way to execute code when a given service dies. KDBus provides this with an
KDBUS_ITEM_ID_REMOVE.

The client will receive a notification in its memory pool.

We can do this in the exact same way we handle services.

Add a local per process table in the client:

Connection to KDBus DeathRecipient object
ID 99 sp<IDeathRecipient> whatToDo
... ...

Spawn threads handling notifications.

63

