
1

Adaptive Queued Locking to Optimize
Transactional Memory

Tim Chen (tim.c.chen@linux.intel.com)

2

Transactional Memory, where it works great

• Hardware tracks conflict of working data set for threads in
critical section, very low overhead

• More than 1 thread can run in critical section

• Great parallelism, no locking!

Memory location access
when running in critical section

3

Transactional Memory, where things slow down

• Data conflict when one thread write to memory another thread has
read/written, need to abort.

• What can we do: Retry
• Other threads can enter the critical section in the mean time,

likelihood of conflict increases if we don’t lock explicitly

Conflict more
likely with
additional
threads

4

Pile Up when Retrying with Failed Speculations

Try Speculative
Execution

Conflict
increase
with
#threads

Successful Execution

Threads enter
Critical section

A mechanism to regulate #threads executing in critical section
to prevent pileup causing successful speculation going to zilch

Pileup begins when #threads enter > #threads complete
#threads completed goes down quickly due to increase conflicts
Arrgh! we still need to lock after all, any way to avoid locking?

Critical Section

5

Problem with Retry of Speculative Execution

0

500000

1000000

1500000

2000000

2500000

3000000

0 5 10 15 20 25 30 35

Threads

Linked List Transactions (5% modifications
95% lookup)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Threads

Fraction of Speculative Transactions

Linked list access with max of 3 retries allowed

6

Regulate the Number of Threads

Try Speculative
Execution Conflict

increase
with
#threads

Successful Execution

Threads enter
Critical section

Critical Section

Queue and control
#threads to retry

7

Aperture Concept

• Regulate the number of speculative

threads entering the critical section after

abort

• Increase or decrease the aperture

based on the abort rate

• Queue up aborted threads and limit

#threads allowed to retry

8

MCS lock provides a distributed queueing mechanism

• We can take advantage of MCS distributed queueing mechanism,

• Allow more than one thread into the critical section

• Thread at head of MCS queue performing regulation duties: admission to critical
section, monitor abort rate, aperture adjustment

• It is a self adaptive scheme, no prior optimization needed

9

Regulated Speculative Transaction

Boolean: exclusive (=0)

Counter: cur_quota, threads

Pointer: last

mcs_tsx_regulator

mcs_tsx_node

Bool: Head (=1)

Pointer: Next

mcs_tsx_node

Head = 0

Next

Head = 0

Next

Thread, head of queue

transaction mode

Threads throttled, waiting on MCS queue

Threads not queued,

transaction mode

mcs_tsx_node

10

MCS queued Locking with Adaptive Aperture

0

500000

1000000

1500000

2000000

2500000

3000000

0 5 10 15 20 25 30 35

Threads

Linked List Transactions (5% modifications 95%
lookup)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Threads

Fraction of Speculative Transactions

mcs_tsx

simple_tsx

11

How Often do We Repeat after Abort?

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Threads

Avg Number of Retries on Speculative Failure

mcs_tsx

simple_tsx

12

Observations

• Throughput 2 to 3 times of normal transactional memory that uses retry and
locking fallback at high thread counts.

• Does not work as well with small number of threads

• The aperture adapt down too quickly?

• Overhead more on updating count of threads in critical region, pointer update to
queueing.

• Q-spinklock approach from Waiman to shrink the lock structure, retry and don’t
queue on first abort

• Queued locking shows promise, we have more work to do to tune its behavior

13

Acknowledgements

* Andi Kleen – who provided many great insights to prompt this work

Thank You

