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Transactional Memory, where it works great

« Hardware tracks conflict of working data set for threads in
critical section, very low overhead

« More than 1 thread can run in critical section

« Great parallelism, no locking!

Memory location access
when running in critical section




Transactional Memory, where things slow down

« Data conflict when one thread write to memory another thread has
read/written, need to abort.

« What can we do: Retry
« Other threads can enter the critical section in the mean time,

likelihood of conflict increases if we don’t lock explicitly
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Pile Up when Retrying with Failed Speculations

Threads enter L | Conflict J

| Try Speculative
Critical section “| Execution increase
with

#threads

Critical Section

Vv

Successful Execution

Pileup begins when #threads enter > #threads complete
#threads completed goes down quickly due to increase conflicts
Arrgh! we still need to lock after all, any way to avoid locking?

A mechanism to regulate #threads executing in critical section
to prevent pileup causing successful speculation going to zilch




Problem with Retry of Speculative Execution

Linked list access with max of 3 retries allowed
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Regulate the Number of Threads
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Aperture Concept

« Regulate the number of speculative
threads entering the critical section after

abort

« Increase or decrease the aperture

based on the abort rate

 Queue up aborted threads and limit

#threads allowed to retry




MCS lock provides a distributed queueing mechanism

« We can take advantage of MCS distributed queueing mechanism,
« Allow more than one thread into the critical section

« Thread at head of MCS queue performing regulation duties: admission to critical
section, monitor abort rate, aperture adjustment

« Itis a self adaptive scheme, no prior optimization needed




Regulated Speculative Transaction

\mcs_tsx_regulator

]Boolean: exclusive (=0)
Counter: cur_quota, threads

Pointer: las

\mcs_tsx_node\ \mcs_tsx_node \ \mcs_tsx_node \
Bool: Head (=1) Head =0 \Head =0
Pointer: Nexﬂ Next} Nexﬂ
l I ’Threads throttled, waiting on MCS queue
’Threads not queued, h’hread, head of queue

transaction mode\ transaction mode‘




MCS queued Locking with Adaptive Aperture

Fraction of Speculative Transactions
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How Often do We Repeat after Abort?

Avg Number of Retries on Speculative Failure
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Observations

« Throughput 2 to 3 times of normal transactional memory that uses retry and
locking fallback at high thread counts.

« Does not work as well with small number of threads
The aperture adapt down too quickly?

Overhead more on updating count of threads in critical region, pointer update to
queueing.

« Q-spinklock approach from Waiman to shrink the lock structure, retry and don't
queue on first abort

 Queued locking shows promise, we have more work to do to tune its behavior
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