Adaptive Queued Locking to Optimize

Transactional Memory

Tim Chen (tim.c.chen@linux.intel.com)




Transactional Memory, where it works great

« Hardware tracks conflict of working data set for threads in
critical section, very low overhead

« More than 1 thread can run in critical section

« Great parallelism, no locking!

Memory location access
when running in critical section




Transactional Memory, where things slow down

« Data conflict when one thread write to memory another thread has
read/written, need to abort.

« What can we do: Retry
« Other threads can enter the critical section in the mean time,

likelihood of conflict increases if we don’t lock explicitly

— —

e 4 T

Conflict more
likely with
additional
threads




Pile Up when Retrying with Failed Speculations

Threads enter L | Conflict J

| Try Speculative
Critical section “| Execution increase
with

#threads

Critical Section

Vv

Successful Execution

Pileup begins when #threads enter > #threads complete
#threads completed goes down quickly due to increase conflicts
Arrgh! we still need to lock after all, any way to avoid locking?

A mechanism to regulate #threads executing in critical section
to prevent pileup causing successful speculation going to zilch




Problem with Retry of Speculative Execution

Linked list access with max of 3 retries allowed

Linked List Transactions (5% modifications Fraction of Speculative Transactions
95% Iookup) 1.2

3000000

1
2500000 ‘.‘-H
038

2000000

0.6
1500000

/ \ 0.4
1000000 g
500000 M o

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Threads Threads




Regulate the Number of Threads

Threads enter

Queue and control

#threads to retry

Critical section

Try Speculative
Execution

5| Conflict
inCrease

with
#threads

Critical Section

Vv

Successful Execution




Aperture Concept

« Regulate the number of speculative
threads entering the critical section after

abort

« Increase or decrease the aperture

based on the abort rate

 Queue up aborted threads and limit

#threads allowed to retry




MCS lock provides a distributed queueing mechanism

« We can take advantage of MCS distributed queueing mechanism,
« Allow more than one thread into the critical section

« Thread at head of MCS queue performing regulation duties: admission to critical
section, monitor abort rate, aperture adjustment

« Itis a self adaptive scheme, no prior optimization needed




Regulated Speculative Transaction

\mcs_tsx_regulator

]Boolean: exclusive (=0)
Counter: cur_quota, threads

Pointer: las

\mcs_tsx_node\ \mcs_tsx_node \ \mcs_tsx_node \
Bool: Head (=1) Head =0 \Head =0
Pointer: Nexﬂ Next} Nexﬂ
l I ’Threads throttled, waiting on MCS queue
’Threads not queued, h’hread, head of queue

transaction mode\ transaction mode‘




MCS queued Locking with Adaptive Aperture

Fraction of Speculative Transactions

Linked List Transactions (5% modifications 95%

1.2
lookup)
3000000
1 -
2500000
0.8 'T
2000000
0.6
==@==mcs_tsx
1500000 == simple_tsx
0.4
1000000
0.2
500000
0 T T T T T T 1
0 5 10 15 20 25 30 35
0 T T T T T T ) Threads
0 5 10 15 20 25 30 35

Threads




How Often do We Repeat after Abort?

Avg Number of Retries on Speculative Failure

25 W
| /
1.5
==@==mcs_tsx
== simple_tsx
1

0.5

0 5 10 15 20 25 30 35

Threads




Observations

« Throughput 2 to 3 times of normal transactional memory that uses retry and
locking fallback at high thread counts.

« Does not work as well with small number of threads
The aperture adapt down too quickly?

Overhead more on updating count of threads in critical region, pointer update to
queueing.

« Q-spinklock approach from Waiman to shrink the lock structure, retry and don't
queue on first abort

 Queued locking shows promise, we have more work to do to tune its behavior




Acknowledgements

* Andi Kleen — who provided many great insights to prompt this work




intel)




