
Presented by

Date

Upstreaming ION Features: 
Issues that remain

Linux Plumbers 2015
Sumit Semwal

20-Aug-2015



ION and its upstreamable features



ION? What??

- Memory Manager written for Android
- Devices have different ‘constraints’ on the memory 

they can access
- Allocates from different pools or types of memory

- Cached or uncached buffers
- Manages Caching and Shares via dma-buf
- Primarily for Graphics, but other users as well
- Generally Allocator, and dma_buf exporter



ION Features Upstreaming:

- Allocation
- ‘correct’ way of mapping & coherency 

management
- Cached v/s uncached?

- Sharing
- done with dma-buf; ION only as an exporter though, 

doesn’t support importing



Allocation



ION Allocation

- ‘what’s not right with ION allocation’
- Userspace is required to understand device buffer 

constraints, and available heaps
- Upstream friendly way:

- is to have allocation ‘sorted out’ in a way that 
applications don’t have to know exactly the hardware 
underneath



Allocation: Upstreaming ION needs

- Same buffer, different devices, different 
constraints
- need a way of defining and sharing device 

constraints in kernel
- use device constraints to help with choosing 

allocator



Constraint-aware Allocation: Possibilities

- Two ways discussed
- Migration of pages
- Delayed Allocation



Allocation: Prerequisites

- For both migration and delayed allocation:
- Sharing of device constraints
- All importers must follow the sequence

- ‘attach()’ 
- -> map() -> {USE} -> unmap() and repeat

- detach()



Allocation: Constraint Sharing

- Share constraints, and match
- Constraint sharing is done via attach->dev-

>dma_parms at each device attach
- Rob posted [1] for adding some information in dma_parms, and I 

took them as part of my constraint-sharing patches [2]

- Constraint matching for devices can be done in 
multiple ways

[1]: https://lists.linaro.org/pipermail/linaro-mm-sig/2012-July/002250.html
[2]: https://lists.linaro.org/pipermail/linaro-kernel/2015-January/019901.html

https://lists.linaro.org/pipermail/linaro-mm-sig/2012-July/002250.html
https://lists.linaro.org/pipermail/linaro-kernel/2015-January/019901.html


Allocation: Migration of pages

- Migration of pages [1]
- suggested at ELCE 2013 as ‘transparent backing 

store migration’
- Migrate backing storage at attach time if required
- Seems a pretty decent Idea!
- Aggressive caching, and/or outright pinning by exporters 

probably makes it quite difficult to implement
- Unfortunately, no patches seem to have been submitted 

:([1]: http://events.linuxfoundation.org/sites/events/files/slides/ELCE-DMABUF.pdf, Lucas Stach, Philipp Zabel, Pengutronix; 
Video of the talk at: https://www.youtube.com/watch?v=w_1jP1CSfqM

http://events.linuxfoundation.org/sites/events/files/slides/ELCE-DMABUF.pdf
https://www.youtube.com/watch?v=w_1jP1CSfqM


Allocation: Delayed Allocation

- Delay Allocation to as late as possible
- Allocate at the *first* map() call after _ALL_ 

interested importers have attached to the dma_buf
- It’s problematic for Android

- buffers may be passed around between applications, 
each sharing the buffer with one device

- Possible workaround: have dummy-devices, 
correlate to Android gralloc most common usage 
types



Allocation: Recap of cenalloc

- 2 Dimensions
- ‘Generic’ exporter interface
- Delayed Allocation based on constraint-sharing

- Generic Exporter interface
- miscdevice /dev/cenalloc created, which acts as dma-buf exporter
- allocators registered with this device at boot time, corresponding 

to memory constraints that they can allocate for
- create_buffer, and share with importers



Allocation: Recap of cenalloc

- Delayed Allocation
- each importer sets the required constraints in its dev-

>dma_parms, and calls attach()
- actual allocation happens at first map_attachment() call to the 

buffer, based on the current constraints of the buffer



Allocation: Recap of cenalloc

- Cenalloc - RFC review received
- Initially 4 patch series, with 2 about constraint sharing 

and 2 adding cenalloc
- Split into constraint-sharing and cenalloc series 

separately
- Constraint-sharing seems to be stuck :(

- miscdevice /dev/cenalloc not liked by many
- should be easy to convert into dma-buf helpers



Coherency, Mapping…. 
and other issues



Other issues: ION dma layer abuse

- ION Uses dma sync APIs without map first
- cached buffers shouldn’t need to sync at alloc time.

- no guaranteed enforcement
- can uncached be replaced with CMA totally?



Coherency: Issues
- “ION stops trying to do anything special with 

coherency”

- “Same-device coherency management”
- devices can use both coherent and non-coherent transactions.
- When mapping same memory multiple times, don’t want to flush cpu 

caches multiple times
- no mechanism in dma api to handle this, so devices have 

caches and stuff to avoid the cpu cache flush



Discussion Topics



Discussion Topics
- Allocation and Constraint-sharing based approaches
- Mapping
- Coherency 



Constraint Sharing and Allocation: Discussion

- Are we ok with this idea of constraint-sharing based 
allocation (delayed and/or migration)?

- YES:
- I’ll re-submit constraint-sharing patches
- changes on drm and v4l for following correct attach / map / unmap 

sequence, and support for delayed allocation
- rework cenalloc patch as dma-buf helpers

- NO: <begin speculation>
- keep the ION way of userspace allocation decision, and help to 

address other issues to get ION moved to mainline?
- <end speculation>



Map: suggestion

- “Map sg-table without copying data”
- with this, exporter can test if attachments work by test-attaching 

stuff
- Bit inefficient, but exporters can cache the mapped sgtable, if they 

wanted.



Coherency: Discussion
- “ION stops trying to do anything special with 

coherency”
- Call standard dma APIs for coherency
- BIG performance issues for Android, since uncached page pooling 

won’t be possible

- “Same-device coherency management”
- Need Core DMA API extensions to allow no cpu-cache-flushing 

while mapping same memory multiple times



Recent ION patches for discussion

- ION’s interface has gained more users
- DT bindings for ION

- “staging: ion: Add generic ion-physmem driver” from Andrew 
Andrianov [https://lkml.org/lkml/2015/6/22/323]

- Add default dev for cma heap
- to allow to add another device for cma heap allocation
- “staging: ion: Add a default struct device for cma heap” from 

Feng Tang [https://lkml.org/lkml/2015/8/6/212]

https://lkml.org/lkml/2015/6/22/323
https://lkml.org/lkml/2015/8/6/212


References
● https://lwn.net/Articles/565469/
● Laura’s Last LPC’s excellent presentation - https://www.linuxplumbersconf.

org/2014/ocw/system/presentations/2409/original/04%20-%20iondma_foreview_v2.pdf

https://lwn.net/Articles/565469/
https://lwn.net/Articles/565469/
https://www.linuxplumbersconf.org/2014/ocw/system/presentations/2409/original/04%20-%20iondma_foreview_v2.pdf
https://www.linuxplumbersconf.org/2014/ocw/system/presentations/2409/original/04%20-%20iondma_foreview_v2.pdf
https://www.linuxplumbersconf.org/2014/ocw/system/presentations/2409/original/04%20-%20iondma_foreview_v2.pdf



