
TPM2: Kernel driver to Event-driven
applications
Jarkko Sakkinen <jarkko.sakkinen@intel.com>

Philip Tricca <philip.b.tricca@intel.com>

Agenda

• What it is, what it does, why you should care

• Architecture / component model

• TPM2 Resource Management

• Kernel Driver

• Status: Resource Management & Event log

• User Space Plumbing

• APIs & Async I/O

• Resource Management

• Aligning kernel & user space resource management

Trusted Platform Module v2.0

What it is, what it does, why you should care

• Crypto co-processor
• Key protection, generation, entropy / RNG & usage policy

• Crypto functions: asymmetric, symmetric, hash, hmac

• Algorithm agility: flexible support for new algorithms

• Crypto decelerator: not fast

• Software measurements / “measured boot”
• Tamper resistant (software) hash chain, “extend” operation == rolling hash

• Rolling hash records software execution history

• Useful for reporting on platform software state & policy decisions

TCG TPM2 Software Stack: design
System API (SYS)

• 1:1 mapping to

TPM2 commands

• No

– file IO

– crypto

– heap

Enhanced SAPI (ESYS)
• Spec public
• No implementation yet
• Additional utility functions
• Provides Cryptographic

functions for sessions
• No file IO
• Requires heap

Feature API (FAPI)
• Spec in draft form
• No implementation yet
• File IO
• Requires heap
• Must be able to do retries
• Context based state
• Must support static linking

TPM Access Broker and Resource Manager (TAB/RM)
• Power management
• Potentially no file IO – depends on power mgmt.

• Abstract Limitations of TPM Storage
• No crypto

TPM Command Transmission Interface (TCTI)
• Abstract command / response mechanism
• Decouple APIs driving TPM from command transport / IPC

• No crypto
• No heap, file I/O

Intel Confidential

TPM Device Driver
• Device Interface (CRB / polling)
• Pre-boot log handoff

U
s
e
r

K
e
r
n
e
l

2017 TCG Work
Refactoring existing specs, lots of progress on ESAPI

• Combined TCTI / SAPI spec separated into independent specs w/ new versions of each

• New API for converting (aka “marshalling”) between C types and byte-stream
representation

Public Review open:

• TCTI v1.0: https://trustedcomputinggroup.org/wp-
content/uploads/TSS_TCTI_v1.0_r04_Public-Review.pdf

• SAPI v1.1: https://trustedcomputinggroup.org/wp-
content/uploads/TSS_SAPI_v1.1_r21_Public_Review.pdf

• Type Marshalling v1.0: https://trustedcomputinggroup.org/wp-
content/uploads/TSS_Marshaling_v1.0_r03_Public-Review.pdf

• TPM2 Access Broker & Resource Manager v1.0: https://trustedcomputinggroup.org/wp-
content/uploads/TSS-TAB-and-Resource-Manager-ver1.0-rev16_Public_Review.pdf

https://trustedcomputinggroup.org/wp-content/uploads/TSS_TCTI_v1.0_r04_Public-Review.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_v1.1_r21_Public_Review.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_Marshaling_v1.0_r03_Public-Review.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS-TAB-and-Resource-Manager-ver1.0-rev16_Public_Review.pdf

TPM2 Resource Management
TPMs are very resource constrained

• Designed for low cost, promote adoption

• RAM on the order of “a few kilobytes”

• Typically able to load ~3 RSA 2048 keys simultaneously

Scarce resources must be shared
• TPM supports commands specific to object and session management:

• ContextLoad, ContextSave & FlushContnext

• Resource Management: Saving & Loading contexts

Isolation through Resource Management
• Associate objects (keys, session) with owner

• Prevent access by non-owner

New Kernel features since LSS 2016

TPM 2.0 resource manager

TPM 2.0 event log

ARM64 support for tpm_crb

In-kernel RM: The basic idea

In-kernel RM: swapping transient contexts

A handle is linked to a context only as long as it is loaded.
• Assigned when context is loaded
• Reclaimed / recycled after Context is flushed

A context must be always explicitly flushed with
TPM2_FlushContext.
• Saved contexts for transient objects remain resident in the TPM

Handles are “virtualized”
• Virtual handle space starting from 0x08FFFFFF
• Assigned in escending order and substitute them for commands and

responses.

In-kernel RM: swapping session contexts

Handle of a session never changes on its lifetime.
• Context may be saved
• Tracking info remains in TPM

When a session is swapped
• It is saved, not flushed
• Flush removes tracking info, session must be recreated to reload

When connection is closed
• Explicitly flush associated sessions
• TPM space is removed

Software Stack architecture

Enhanced System API (ESAPI) & Feature API (FAPI):

 Specifications are currently available for public review, no implementation yet

System API (SAPI):

 1:1 mapping to TPM2 commands

 No: file IO, crypto, heap

 Async & synchronous APIs

TPM2 Command Transmission Interface (TCTI):

 Decouple APIs driving TPM from command transport / IPC

 ‘receive’ function supports async w/ timeout / polling interface

TPM2 Access Broker & Resource Management (TAB/RM)

Device Driver

TPM2 TSS Components

TPM2

ResourceMgr

TCTI

Access
Broker

IP
C

 F
ro

n
te

n
d Resource

Manager

R
e

sp
o

n
se

C
o

m
m

a
n

d

IPC / Transport

Application

SAPI

TCTI

Tss2_Sys_XXX

C
o

m
m

a
n

d

R
e

sp
o

n
se

Application

SAPI

TCTI

Tss2_Sys_XXX

C
o

m
m

a
n

d

R
e

sp
o

n
se

Application

SAPI

TCTI

Tss2_Sys_Create

C
o

m
m

a
n

d

R
e

sp
o

n
se

Intel Confidential

Userspace libraries: Status
https://github.com/01org/tpm2-tss

Progress since last LPC
• Establishing project structure / process

• Removed POC resource mgmt. daemon

Async I/O & event driven programming frameworks
• Support for async programming models

• Prototype code available for Glib / GIO using Gsource

Lots of interest in language bindings
• Rust bindings from Doug Goldstein @ StarLabs: https://crates.io/crates/tss-sapi

• Rumors of Python bindings but no OSS implementation yet

Currently in planning / next steps
• TCTI dlopen-able interface

• PKCS#11 module in planning

• UEFI & SGX TCTIs?

https://github.com/01org/tpm2-tss
https://crates.io/crates/tss-sapi

Resource Management in user space
https://github.com/01org/tpm2-abrmd

User space daemon integrated with Linux infrastructure (systemd, dbus)

Necessary for supporting

 Existing customers on < 4.12 kernels

 Async I/O

 Remote connections: prototyping TCP / IP / TLS

Prototyping policy layers

 TPM command black list (per-user command sets?)

 Per-connection / process resource caps

https://github.com/01org/tpm2-abrmd

tcti-tabrm
tpm2-abrmd

DBus

Create
Connection

setLocality

getPollHandles

cancel

T
P

M
2

D
B

u
sP

ro
xy

tabd

Connection
Manager

Connection
Data

TctiOptions
TctiDevice

TctiSocket

Command
Source

Response
Sink Resource

Mgr
Access
Broker

Tcti

receive

transmit

Init

Intel Confidential

Tpm2-abrmd: component model

Aligning kernel & user-space RM

Goal: get best of both worlds

Need to isolate user-space AND kernel space TPM objects

• Cannot be done from user-space

• Still not done in kernel RM but now possible

Reduces the need for IPC

• IPC becomes File I/O

• Kernel driver doesn’t support async / poll

• Remote connections via TCP / IP & TLS belong in user-space

Policy requirements not well understood yet

• No policy interface in kernel

• Easy to prototype in user-space

• Prevent resource exhaustion / DoS

