
© 2017 IBM Corporation

Linux-Kernel Memory Ordering Workshop

Joint work with Jade Alglave, Luc Maranget, Andrea Parri, and Alan Stern

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology
Linux Plumbers Conference LKMM Overview, September 15, 2017

© 2017 IBM Corporation2

Linux Kernel Memory Ordering Overview, September 15, 2017

Changes Since LWN Article

simpler model: two rounds of simplification vs. strong model
–Fewer instances of mutually assured recursion
–Simpler model omits 2+2W, release sequences, and addrpo

• Will add them back in if compelling use cases arise
–Simplified cumulativity (weakened B-cumulativity)
–More complex strong model retained as linux-kernel-hardware.cat

because it more closely delineates hardware guarantees
• Updated from LWN strong model: simplify & handle recent HW changes

Added a full set of atomic RMW operations

Added an early implementation of locking
–spin_trylock(s) equivalent to cmpxchg_acquire(s, 0, 1) emulation
–spin_unlock(s) equivalent to smp_store_release(s, 0) emulation
–Large performance advantages over emulation!

© 2017 IBM Corporation3

Linux Kernel Memory Ordering Overview, September 15, 2017

Example Simplification: “happens-before” Relation

LWN strong-kernel.cat hb:
let rec B-cum-propbase = (B-cum-hb ; hb*) |
 (rfe? ; AB-cum-hb ; hb*)
 and propbase = propbase0 | B-cum-propbase
 and short-obs = ((ncoe|fre) ; propbase+ ; rfe) & int
 and obs = short-obs |
 ((hb* ; (ncoe|fre) ; propbase* ; B-cum-propbase ; rfe) & int)
 and hb = hb0 | (obs ; rfe-ppo)

Current linux-kernel-hardware.cat hb:
let rec prop = (overwrite & ext)? ; cumul-fence ; hb*
 and hb = ppo | rfe | (((hb* ; prop) \ id) & int)

Current linux-kernel.cat hb:
let hb = ppo | rfe | ((prop \ id) & int)

© 2017 IBM Corporation4

Linux Kernel Memory Ordering Overview, September 15, 2017

Purpose of the Linux Kernel Memory Model

Hoped-for benefits of a Linux-kernel memory model
–Memory-ordering education tool (includes RCU)
–Core-concurrent-code design aid: Automate memory-barriers.txt
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling

• For example, CBMC and Nidhugg (CBMC now part of rcutorture)

Likely drawbacks of a Linux-kernel memory model
–Extremely limited size: Handful of processes with handful of code

• Analyze concurrency core of algorithm
• Maybe someday automatically identifying this core
• Perhaps even automatically stitch together multiple analyses (dream on!)

–Limited types of operations (no function call, structures, call_rcu(), …)
• Can emulate some of these
• We expect that tools will become more capable over time
• (More on this on a later slide)

© 2017 IBM Corporation5

Linux Kernel Memory Ordering Overview, September 15, 2017

Current Status and Demo

Release-candidate memory model:
–https://github.com/aparri/memory-model
–Two rounds of simplification since the LWN article's strong model!

Lots and lots of litmus tests:
–https://github.com/paulmckrcu/litmus

Demo: How to run model and capabilities

Plan: Add memory model to Linux kernel
–In new tools/memory-model directory

© 2017 IBM Corporation6

Linux Kernel Memory Ordering Overview, September 15, 2017

RCU Full Litmus Test: Trigger on Weak CPUs?

C auto/C-RW-G+RW-Rr+RW-Ra

{

}

P0(int *x0, int *x1)

{

 r1 = READ_ONCE(*x0);

 synchronize_rcu();

 WRITE_ONCE(*x1, 1);

}

P1(int *x1, int *x2)

{

 rcu_read_lock();

 r1 = READ_ONCE(*x1);

 smp_store_release(x2, 1);

 rcu_read_unlock();

}

https://github.com/paulmckrcu/litmus/blob/master/auto/C-RW-G%2BRW-Rr%2BRW-Ra.litmus

P2(int *x2, int *x0)

{

 rcu_read_lock();

 r1 = smp_load_acquire(x2);

 WRITE_ONCE(*x0, 1);

 rcu_read_unlock();

}

exists

(0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

© 2017 IBM Corporation7

Linux Kernel Memory Ordering Overview, September 15, 2017

Same RCU Litmus Test: Trigger on Weak CPUs?

P0(int *x0, int *x1)
{
 r1 = READ_ONCE(*x0);
 synchronize_rcu();
 WRITE_ONCE(*x1, 1);
}

https://github.com/paulmckrcu/litmus/blob/master/auto/C-RW-G%2BRW-Rr%2BRW-Ra.litmus

P2(int *x2, int *x0)
{
 rcu_read_lock();
 r1 = smp_load_acquire(x2);
 WRITE_ONCE(*x0, 1);
 rcu_read_unlock();
}

exists (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

P1(int *x1, int *x2)
{
 rcu_read_lock();
 r1 = READ_ONCE(*x1);
 smp_store_release(x2, 1);
 rcu_read_unlock();
}

© 2017 IBM Corporation8

Linux Kernel Memory Ordering Overview, September 15, 2017

Current Model Capabilities ...

 READ_ONCE() and WRITE_ONCE()

 smp_store_release() and smp_load_acquire()

 rcu_assign_pointer(), rcu_dereference() and lockless_dereference()

 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu()
–Also synchronize_rcu_expedited(), but same as synchronize_rcu()

 smp_mb(), smp_rmb(), smp_wmb(), smp_read_barrier_depends(),
smp_mb__before_atomic(), and smp_mb__after_atomic()

 xchg(), xchg_relaxed(), xchg_release(), xchg_acquire(), cmpxchg(),
cmpxchg_relaxed(), cmpxchg_release(), and cmpxchg_acquire()

–Plus a great many atomic_*() functions, see linux-kernel.def for list

 spin_lock(), spin_unlock(), and spin_trylock()

© 2017 IBM Corporation9

Linux Kernel Memory Ordering Overview, September 15, 2017

… And Limitations

Compiler optimizations not modeled
No arithmetic
Single access size, no partially overlapping accesses
No arrays or structs (but can do trivial linked lists)
No dynamic memory allocation
No interrupts, exceptions, I/O, or self-modifying code
No functions
No asynchronous RCU grace periods, but can emulate them:

– Separate thread with release-acquire, grace period, and then callback code

Locking is new and lightly tested
– Compare suspicious results to emulations with xchg() and report any bugs!

© 2017 IBM Corporation10

Linux Kernel Memory Ordering Overview, September 15, 2017

How to Run Models

Download herd tool as part of diy toolset
–http://diy.inria.fr/sources/index.html

Build as described in INSTALL.txt
–Need ocaml v4.01.0 or better: http://caml.inria.fr/download.en.html

• “make world.opt” – Or install from your distro (easier and faster!)
• Recent ocaml needs opam, see diy's README

Memory model (https://github.com/aparri/memory-model):
– linux.def: Support pseudo-C code
– linux-kernel.cfg: Specify Linux-kernel model
– linux-kernel.bell: “Bell” file defining events and relationships
– linux-kernel.cat: “Cat” file defining actual memory model
– linux-kernel-hardware.cat: Complex model more closely describing HW

Various litmus tests (https://github.com/paulmckrcu/litmus):
– herd7 -conf linux-kernel.cfg C-RW-R+RW-Gr+RW-Ra.litmus
– herd7 -conf linux-kernel.cfg C-RW-R+RW-G+RW-R.litmus

© 2017 IBM Corporation11

Linux Kernel Memory Ordering Overview, September 15, 2017

Repeat of Earlier Litmus Test: Trigger on Weak CPUs?

P0(int *x0, int *x1)
{
 r1 = READ_ONCE(*x0);
 synchronize_rcu();
 WRITE_ONCE(*x1, 1);
}

https://github.com/paulmckrcu/litmus/blob/master/auto/C-RW-G%2BRW-Rr%2BRW-Ra.litmus

P2(int *x2, int *x0)
{
 rcu_read_lock();
 r1 = smp_load_acquire(x2);
 WRITE_ONCE(*x0, 1);
 rcu_read_unlock();
}

exists (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

P1(int *x1, int *x2)
{
 rcu_read_lock();
 r1 = READ_ONCE(*x1);
 smp_store_release(x2, 1);
 rcu_read_unlock();
}

© 2017 IBM Corporation12

Linux Kernel Memory Ordering Overview, September 15, 2017

Running Litmus Test on Earlier Slide

$ herd7 -conf strong.cfg litmus/auto/C-RW-G+RW-Rr+RW-Ra.litmus
Test auto/C-RW-G+RW-Rr+RW-Ra Allowed
States 7
0:r1=0; 1:r1=0; 2:r1=0;
0:r1=0; 1:r1=0; 2:r1=1;
0:r1=0; 1:r1=1; 2:r1=0;
0:r1=0; 1:r1=1; 2:r1=1;
0:r1=1; 1:r1=0; 2:r1=0;
0:r1=1; 1:r1=0; 2:r1=1;
0:r1=1; 1:r1=1; 2:r1=0;
No
Witnesses
Positive: 0 Negative: 7
Condition exists (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)
Observation auto/C-RW-G+RW-Rr+RW-Ra Never 0 7
Hash=0cb6fa9aabafe5e4e28d1332afa966e3

Cannot happen

© 2017 IBM Corporation13

Linux Kernel Memory Ordering Overview, September 15, 2017

But Wait! There Are Prizes!!!

First person to find a bug in the memory model
–For example, a litmus test allowed by hardware with mainline Linux

support, where that litmus test is prohibited by the memory model
–Prize: Libre Computer Potato kickstarter board

First person using memory model to find a bug in the kernel
–For example, a missing smp_mb()
–Consolation category: Missing comment in arch code relying on arch-

specific behavior
–Prize: Libre Computer Potato kickstarter board

Best litmus test (counter-intuitive, biggest kernel example, ...)
–Prize: Libre Computer Potato kickstarter board

And a surprise consolation prize!!!

© 2017 IBM Corporation14

Linux Kernel Memory Ordering Overview, September 15, 2017

Another RCU Litmus Test: Trigger on Weak CPUs?

P0(int *x0, int *x1)
{
 r1 = READ_ONCE(*x0);
 synchronize_rcu();
 WRITE_ONCE(*x1, 1);
}

https://github.com/paulmckrcu/litmus/blob/master/auto/C-RW-G%2BRW-R%2BRW-R.litmus

P2(int *x2, int *x0)
{
 rcu_read_lock();
 r1 = READ_ONCE(*x2);
 WRITE_ONCE(*x0, 1);
 rcu_read_unlock();
}

exists (0:r1=1 /\ 1:r1=1 /\ 2:r1=1)

P1(int *x1, int *x2)
{
 rcu_read_lock();
 r1 = READ_ONCE(*x1);
 WRITE_ONCE(*x2, 1);
 rcu_read_unlock();
}

© 2017 IBM Corporation15

Linux Kernel Memory Ordering Overview, September 15, 2017

A Hierarchy of Litmus Tests: Rough Rules of Thumb

Only one thread or only one variable: No ordering needed!

Dependencies and rf relations everywhere
–No additional ordering required

 If all rf relations, can replace dependencies with acquire
–Some architecture might someday also require release, so careful!

 If only one relation is non-rf, can use release-acquire
–Dependencies/rmb/wmb/READ_ONCE() sometimes replace acquire
–But be safe – actually run the model to find out exactly what works!!!

 If two or more relations are non-rf, strong barriers needed
–At least one between each non-rf relation
–But be safe – actually run the model to find out exactly what works!!!

But for full enlightenment, see memory model itself
–https://github.com/aparri/memory-model

© 2017 IBM Corporation16

Linux Kernel Memory Ordering Overview, September 15, 2017

A Hierarchy of Memory Ordering: Rough Overheads

Read-write dependencies:
–Free everywhere

Read-read address dependencies:
–Free other than on DEC Alpha

Release/acquire chains and read-read control dependencies:
–Lightweight: Compiler barrier on x86 and mainframe, special

instructions on ARM, lightweight isync or lwsync barriers on PowerPC

Restore sequential consistency:
–Full memory barriers

• Expensive pretty much everywhere
• But usually affect performance more than scalability

© 2017 IBM Corporation17

Linux Kernel Memory Ordering Overview, September 15, 2017

Litmus Test Exercises (1/4)

All rf relations and dependencies
–C-LB+ldref-o+o-ctrl-o+o-dep-o.litmus

All rf relations but one dependency removed
–C-LB+ldref-o+o-o+o-dep-o.litmus

Message passing with read-to-read address dependency
–C-MP+o-assign+o-dep-o.litmus

Message passing with lockless_dereference()
–C-MP+o-assign+ldref-o.litmus

All rf relations, acquire load instead of one dependency
–C-LB+ldref-o+acq-o+o-dep-o.litmus

© 2017 IBM Corporation18

Linux Kernel Memory Ordering Overview, September 15, 2017

Litmus Test Exercises (2/4)

All rf relations, but all dependencies replaced by acquires
–C-LB+acq-o+acq-o+acq-o.litmus

One co relation, the rest remain rf relations
–C-WWC+o+acq-o+acq-o.litmus

One co, rest remain rf, but with release-acquire
–C-WWC+o+o-rel+acq-o.litmus

One co, one fr, and only one remaining rf relation
–C-Z6.0+o-rel+acq-o+o-mb-o.litmus

One co, one fr, one rf, and full memory barriers
–C-Z6.0+o-mb-o+acq-o+o-mb-o.litmus

© 2017 IBM Corporation19

Linux Kernel Memory Ordering Overview, September 15, 2017

Litmus Test Exercises (3/4)

One co, one fr, one rf, and all but one full memory barriers
–C-3.SB+o-o+o-mb-o+o-mb-o.litmus

One co, one fr, one rf, and all full memory barriers
–C-3.SB+o-mb-o+o-mb-o+o-mb-o.litmus

 IRIW, but with release-acquire
–C-IRIW+rel+rel+acq-o+acq-o.litmus

 Independent reads of independent writes (IRIW), full barriers
–C-IRIW+o+o+o-mb-o+o-mb-o.litmus

© 2017 IBM Corporation20

Linux Kernel Memory Ordering Overview, September 15, 2017

Litmus Test Exercises (4/4): Kernel vs. Hardware

Only co: 2+2W
–C-2+2W+o-r+o-r.litmus
–C-2+2W+o-wmb-o+o-wmb-o.litmus

• herd7 -conf linux-kernel.cfg <file>.litmus
• herd7 -conf linux-kernel.cfg -cat linux-kernel-hardware.cat <file>.litmus

Weaker B-cumulativity
– https://www.kernel.org/pub/linux/kernel/people/paulmck/LWNLinuxMM/C-wmb-is-B-cumulative.litmus

No release sequences (also a difference from C11)
–C-Mprelseq+o-r+rmwinc+a-o.litmus, C-relseq.litmus, C-relseq-not-B-

cumulative.litmus

Additional exercises in the Examples.html file:
– https://www.kernel.org/pub/linux/kernel/people/paulmck/LWNLinuxMM/Examples.html

© 2017 IBM Corporation21

Linux Kernel Memory Ordering Overview, September 15, 2017

Quick Guide to Linux Kernel Memory Model

“coherence”:
SC Per-Variable

“RMW”:
Atomic Operations

“ppo”: Preserved program order, or intra-thread
constraints on instruction execution

“hb”: Happens-before, or constraints
based on temporal ordering

“pb”: Propagates-before, or constraints based on order of
stores reaching memory (including effects of barriers)

“rcu-path”: Constraints on ordering based on
RCU read-side critical sections and grace periods

© 2017 IBM Corporation22

Linux Kernel Memory Ordering Overview, September 15, 2017

“Non-Multicopy Atomic”: Writes Unsynchronized

CPU 0

CPU 1

CPU 2
r2 = y; smp_rmb(); r3 = x;

x = 1;

r1 = x; y=r1;

Can have r1==1 && r2==1 && r3==0
What would prohibit this outcome?

(C-WRC-o+o-data-o+o-rmb-o.litmus)

© 2017 IBM Corporation23

Linux Kernel Memory Ordering Overview, September 15, 2017

Lack of Ordering For Read-Read Dependencies

Writing CPU Core

Cache
Bank 0

Cache
Bank 1

Reading CPU Core

Cache
Bank 0
(Idle)

Cache
Bank 1
(Busy)

Pointer Pointed-to
Object

Can you write one litmus test demonstrating this and
another prohibiting this?

p->a = 1;
WRITE_ONCE(gp, p);

p = READ_ONCE(gp);
BUG_ON(p && p->a != 1);

© 2017 IBM Corporation24

Linux Kernel Memory Ordering Overview, September 15, 2017

Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of their employers.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2017 IBM Corporation25

Linux Kernel Memory Ordering Overview, September 15, 2017

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

