
© 2016 IBM Corporation

Linux-Kernel Memory Ordering: Help Arrives At Last!

Joint work with Jade Alglave, Luc Maranget, Andrea Parri, and Alan Stern

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

© 2016 IBM Corporation2

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Overview

Who cares about memory models?

But memory-barrier.txt is incomplete!

Project history

Cat-language example: single-variable SC

Current status and demo

Not all communications relations are created equal

Rough rules of thumb

© 2016 IBM Corporation3

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Who Cares About Memory Models?

© 2016 IBM Corporation4

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Who Cares About Memory Models, and If So, Why???

Hoped-for benefits of a Linux-kernel memory model
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling

Likely drawbacks of a Linux-kernel memory model
–Extremely limited code size

• Analyze concurrency core of algorithm
• Maybe someday automatically identifying this core
• Perhaps even automatically stitch together multiple analyses (dream on!)

–Limited types of operations (no function call, structures, call_rcu(), …)
• Can emulate some of these
• We expect that tools will become more capable over time
• (More on this on a later slide)

© 2016 IBM Corporation5

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

But memory-barrier.txt is Incomplete!

© 2016 IBM Corporation6

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

But memory-barrier.txt is Incomplete!

The Linux kernel has left many corner cases unexplored

The Linux-kernel memory model must define many of them

Guiding principles:
–Strength preferred to weakness
–Simplicity preferred to complexity
–Support existing non-buggy Linux-kernel code (later slide)
–Be compatible with hardware supported by the Linux kernel (later slide)
–Support future hardware, within reason
–Be compatible with C11, where prudent and reasonable (later slide)
–Expose questions and areas of uncertainty (later slide)

• Which means not one but two memory models!

© 2016 IBM Corporation7

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Support Existing Non-Buggy Linux-Kernel Code

But there are some limitations:
–Compiler optimizations not modeled
–No arithmetic
–Single access size, no partially overlapping accesses
–No arrays or structs (but can do trivial linked lists)
–No dynamic memory allocation
–Read-modify-write atomics: Only xchg() and friends for now
–No locking (but can emulate locking operations with xchg())
–No interrupts, exceptions, I/O, or self-modifying code
–No functions
–No asynchronous RCU grace periods, but can emulate them:

• Separate thread with release-acquire, grace period, and then callback code

Something about wanting the model to execute in finite time...

© 2016 IBM Corporation8

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Be Compatible With HW Supported by Linux Kernel

Model must be in some sense a least common denominator:
–If a given system allows some behavior, the model must also do so
–Note that the model can allow behavior forbidden by systems

However, compiler & kernel code can mask HW weaknesses:
–Alpha has memory barrier for smp_read_barrier_depends()
–Itanium gcc emits ld.acq and st.rel for volatile loads and stores

Key problem: How to know what does hardware do?
–Check existing documentation
–Consult HW architects, where available and responsive
–Formal memory models, where available
–Run experiments on real hardware

© 2016 IBM Corporation9

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Be Compatible With HW Supported by Linux Kernel

Model must be in some sense a least common denominator:
–If a given system allows some behavior, the model must also do so
–Note that the model can allow behavior forbidden by systems

However, compiler & kernel code can mask HW weaknesses:
–Alpha has memory barrier for smp_read_barrier_depends()
–Itanium gcc emits ld.acq and st.rel for volatile loads and stores

Key problem: How to know what does hardware do?
–Check existing documentation
–Consult HW architects, where available and responsive
–Formal memory models, where available
–Run experiments on real hardware
–In the end, make our best guess!!! Expect changes over time...

© 2016 IBM Corporation10

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Be Compatible With C11, Where Reasonable

smp_mb() stronger than C11 counterpart

Linux-kernel RMW atomics stronger than C11

C11 doesn't have barrier-amplification primitives
–smp_mb__before_atomic() and friends

C11 doesn't have smp_read_barrier_depends()

C11 doesn't have control dependencies

C11 doesn't have RCU grace periods
–Though a proposal has been solicited and is in progress

By default, support the Linux kernel's ordering needs

© 2016 IBM Corporation11

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Expose Questions and Areas of Uncertainty

External visibility of release-acquire and unlock-lock ordering

Corner cases, including write erasure and acquire weakening
–Which might no longer be areas of uncertainty

Weak barriers and transitive ordering, for example, write-only
scenarios and smp_wmb()

© 2016 IBM Corporation12

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Project Pre-History

© 2016 IBM Corporation13

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Project Prehistory

2005-present: C and C++ memory models
–Working Draft, Standard for Programming Language C++

2009-present: x86, Power, and ARM memory models
–http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

2014: Clear need for Linux-kernel memory model, but...
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

As a result, no takers

© 2016 IBM Corporation14

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Project Prehistory

2005-present: C and C++ memory models
–Working Draft, Standard for Programming Language C++

2009-present: x86, Power, and ARM memory models
–http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

2014: Clear need for Linux-kernel memory model, but...
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

As a result, no takers

Until early 2015

© 2016 IBM Corporation15

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Our Founder

© 2016 IBM Corporation16

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Our Founder

Jade Alglave, University College London and Microsoft Research

© 2016 IBM Corporation17

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

© 2016 IBM Corporation18

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

New Requirements:
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

© 2016 IBM Corporation19

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

New Requirements:
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

Adjustment advantage: Solution now feasible!
–No longer need to model all possible compiler optimizations...
–Optimizations not yet envisioned being the most difficult to model!!!
–Jade expressed the model in the “cat” language

• The “herd” tool uses the “cat” language to process concurrent code
fragments, called “litmus tests” (example next slides)

• Initially used a generic language called “LISA”, now C-like language
• (See next few slides for a trivial example..)

© 2016 IBM Corporation20

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Founder's Second Act: Create Prototype Model

And to recruit a guy named Paul E. McKenney (Apr 2015):
–Clarifications of less-than-rigorous memory-barriers.txt wording
–Full RCU semantics: Easy one! 2+ decades RCU experience!!! Plus:

• Jade has some RCU knowledge courtesy of ISO SC22 WG21 (C++)
• “User-Level Implementations of Read-Copy Update”, 2012 IEEE TPDS
• “Verifying Highly Concurrent Algorithms with Grace”, 2013 ESOP

© 2016 IBM Corporation21

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Founder's Second Act: Create Prototype Model

And to recruit a guy named Paul E. McKenney (Apr 2015):
–Clarifications of less-than-rigorous memory-barriers.txt wording
–Full RCU semantics: Easy one! 2+ decades RCU experience!!! Plus:

• Jade has some RCU knowledge courtesy of ISO SC22 WG21 (C++)
• “User-Level Implementations of Read-Copy Update”, 2012 IEEE TPDS
• “Verifying Highly Concurrent Algorithms with Grace”, 2013 ESOP

 Initial overconfidence meets Jade Alglave memory-model
acquisition process! (Dunning-Kruger effect in action!!!)

–Linux kernel uses small fraction of RCU's capabilities
• Often with good reason!

–Large number of litmus tests, with text file to record outcomes
–Followed up by polite but firm questions about why...
–For but one example...

© 2016 IBM Corporation22

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

C-RW-R+RW-G+RW-R.litmus

© 2016 IBM Corporation23

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

© 2016 IBM Corporation24

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

1. Any system doing this should have been strangled at birth
2. Reasonable systems really do this
3. There exist a great many unreasonable systems that really do this
4. A memory order is what I give to my hardware vendor!

© 2016 IBM Corporation25

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

Litmus-test header comment: “Paul says allowed since mid-June”
No matter what you said, I agreed at some point in time!

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

© 2016 IBM Corporation26

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

RCU Litmus Test Can Trigger on Weak CPUs
“This Cycle is Allowed”

void P0(void)
{
 rcu_read_lock();
 WRITE_ONCE(x, 1);

 r1 = READ_ONCE(y);
 rcu_read_unlock();
}

void P1(void)
{

 r2 = READ_ONCE(x);
 synchronize_rcu();
 /* wait */
 /* wait */
 /* wait */
 /* wait */
 WRITE_ONCE(z, 1);
}

void P2(void)
{

 rcu_read_lock();
 WRITE_ONCE(y, 1);

 r3 = READ_ONCE(z);
 rcu_read_unlock();
}

But don't take my word for it...

© 2016 IBM Corporation27

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

The Tool Agrees (Given Late-2016 Memory Model)

$ herd7 macros linux.def conf strong.cfg CRWR+RWG+RWR.litmus
Test auto/CRWR+RWG+RWR Allowed
States 8
0:r1=0; 1:r2=0; 2:r3=0;
0:r1=0; 1:r2=0; 2:r3=1;
0:r1=0; 1:r2=1; 2:r3=0;
0:r1=0; 1:r2=1; 2:r3=1;
0:r1=1; 1:r2=0; 2:r3=0;
0:r1=1; 1:r2=0; 2:r3=1;
0:r1=1; 1:r2=1; 2:r3=0;
0:r1=1; 1:r2=1; 2:r3=1;
Ok
Witnesses
Positive: 1 Negative: 7
Condition exists (0:r1=1 /\ 1:r2=1 /\ 2:r3=1)
Observation auto/CRWR+RWG+RWR Sometimes 1 7
Hash=0e5145d36c24bf7e57e9ef5f046716b8

© 2016 IBM Corporation28

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Summer 2015 Rinse-Lather-Repeat Cycle

The rinse-lather-repeat cycle:
–Jade sends Paul litmus tests

• RCU, non-RCU, combinations of RCU and non-RCU
–Paul sends responses
–Jade attempts to construct corresponding model

• Which raises questions, which she passes along to Paul
• Usually in the form of additional litmus tests

–Paul realizes some responses are implementation-specific
–Paul raises his level of abstraction, adjusts responses

 In a perfect world, Jack Slingwine and I would have fully
defined RCU semantics back in the early 1990s

© 2016 IBM Corporation29

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Summer 2015 Rinse-Lather-Repeat Cycle

The rinse-lather-repeat cycle:
–Jade sends Paul litmus tests

• RCU, non-RCU, combinations of RCU and non-RCU
–Paul sends responses
–Jade attempts to construct corresponding model

• Which raises questions, which she passes along to Paul
• Usually in the form of additional litmus tests

–Paul realizes some responses are implementation-specific
–Paul raises his level of abstraction, adjusts responses

 In a perfect world, Jack Slingwine and I would have fully
defined RCU semantics back in the early 1990s

–But you might have noticed that the world is imperfect!

© 2016 IBM Corporation30

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

At Summer's End...

 I create a writeup of RCU behavior

This results in general rule:
–If there are at least as many grace periods as read-side critical

sections in a given cycle, then that cycle is forbidden
• As in the earlier litmus test: Two critical sections, only one grace period

Jade calls this “principled”
–(Which is about as good as it gets for us Linux kernel hackers)
–But she also says “difficult to represent as a formal memory model”

However, summer is over, and Jade is out of time
–She designates a successor

© 2016 IBM Corporation31

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

At Summer's End...

 I create a writeup of RCU behavior

This results in general rule:
–If there are at least as many grace periods as read-side critical

sections in a given cycle, then that cycle is forbidden
• As in the earlier litmus test: Two critical sections, only one grace period

Jade calls this “principled”
–(Which is about as good as it gets for us Linux kernel hackers)
–But she also says “difficult to represent as a formal memory model”

However, summer is over, and Jade is out of time
–She designates a successor

But first, Jade produced the first demonstration that a Linux-
kernel memory model is feasible!!!

–And forced me to a much better understanding of RCU!!!

© 2016 IBM Corporation32

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Project Handoff: Jade's Successor

Luc Maranget, INRIA Paris (November 2015)

© 2016 IBM Corporation33

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

This Is Luc's First Exposure to RCU

© 2016 IBM Corporation34

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

This Is Luc's First Exposure to RCU

 It is my turn to use litmus tests as a form of communication
–Sample tests that RCU should allow or forbid

• Accompanied by detailed rationale for each
–Series of RCU “implementations” in litmus-test language (AKA “LISA”)

• With varying degrees of accuracy and solver overhead
• Some of which require knowing the value loaded before the load
• Which, surprisingly enough, is implementable in memory-model tools!

“Prophecy variables”, they are called
–Run Luc's models against litmus tests, return scorecard

• With convergence, albeit slow convergence

© 2016 IBM Corporation35

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

This Is Luc's First Exposure to RCU

 It is my turn to use litmus tests as a form of communication
–Sample tests that RCU should allow or forbid

• Accompanied by detailed rationale for each
–Series of RCU “implementations” in litmus-test language (AKA “LISA”)

• With varying degrees of accuracy and solver overhead
• Some of which require knowing the value loaded before the load
• Which, surprisingly enough, is implementable in memory-model tools!

“Prophecy variables”, they are called
–Run Luc's models against litmus tests, return scorecard

• With convergence, albeit slow convergence

 I try writing the RCU ordering rules myself
–Luc: “I see what you are doing, but I don't like your coding style!”
–Me: “Well, I am a kernel hacker, not a memory-ordering expert!”
–Kernel-hacker evaluation of Luc's style: “Mutually assured recursion”
–Luc's model of RCU also requires modifications to tooling

© 2016 IBM Corporation36

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak

© 2016 IBM Corporation37

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak
–And who is going to run all the tests???

© 2016 IBM Corporation38

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak
–And who is going to run all the tests???

But first: Luc produced first high-quality memory model for the
Linux kernel that included a realistic RCU model!!!

© 2016 IBM Corporation39

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Inject Hardware and Linux-Kernel Reality

Andrea Parri, Real-Time Systems Laboratory
Scuola Superiore Sant'Anna (January 2016)

© 2016 IBM Corporation40

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Large Conversion Effort

Created script to convert litmus test to Linux kernel module
–And then ran the result on x86, ARM, and PowerPC
–And on the actual hardware, just for good measure: Fun with types!!!

Helped Luc add support for almost-C-language litmus tests
–“r1 = READ_ONCE(x)” instead of LISA-code “r[once] r1 x”

Luc's infrastructure used to summarize results on the web
–Compare results of different models, different hardware, and different

litmus tests—extremely effective in driving memory-model evolution!

© 2016 IBM Corporation41

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Model Comparison on the Web (Two Variants of RCU)

RS2RS SAMECRIT

LISA2Rt1G Forbid Allow

auto/RW-G+RW-R3 Forbid Allow

auto/RW-G+RW-G+RW-R3 Forbid Allow

auto/RW-G+RW-G+RW-G+RW-R3 Forbid Allow

auto/RW-G+RW-G+RW-R3+RW-R3 Forbid Allow

auto/RW-G+RW-R3+RW-G+RW-R3 Forbid Allow

Summary of the differences for 2,000+ litmus tests!

© 2016 IBM Corporation42

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Large Conversion Effort

Results look pretty good, but are we just getting lucky???
–Insufficient overlap between specialties!!!
–Way too easy for us to talk past each other

• Which would result in subtle flaws in the memory model
–Need bridge between Linux-kernel RCU and formal memory models

© 2016 IBM Corporation43

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Large Conversion Effort

Results look pretty good, but are we just getting lucky???
–Insufficient overlap between specialties!!!
–Way too easy for us to talk past each other

• Which would result in subtle flaws in the memory model
–Need bridge between Linux-kernel RCU and formal memory models

But first: Andrea developed and ran test infrastructure, plus
contributed directly to the Linux-kernel memory model!!!

© 2016 IBM Corporation44

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Bridging Between Linux Kernel and Formal Methods

Alan S. Stern, Rowland Institute at Harvard (February 2016)

© 2016 IBM Corporation45

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Alan's Background

Maintainer, Linux-kernel USB EHCI, OHCI, & UHCI drivers

© 2016 IBM Corporation46

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Bit More of Alan's Background

Maintainer, Linux-kernel USB EHCI, OHCI, & UHCI drivers

Education:
–Harvard University, A.B. (Mathematics, summa cum laude), 1979
–University of California, Berkeley, Ph.D. (Mathematics), 1984

Selected Publications:
–NMR Data Processing, Jeffrey C. Hoch and Alan S. Stern, Wiley-Liss,

New York (1996).
–“De novo Backbone and Sequence Design of an Idealized α/β-barrel

Protein: Evidence of Stable Tertiary Structure”, F. Offredi, F. Dubail, P.
Kischel, K. Sarinski, A. S. Stern, C. Van de Weerdt, J. C. Hoch, C.
Prosperi, J. M. Francois, S. L. Mayo, and J. A. Martial, J. Mol. Biol.
325, 163–174 (2003).

–“User-Level Implementations of Read-Copy Update”, Mathieu
Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and
Jonathan Walpole, IEEE Trans. Par. Distr. Syst. 23, 375–382 (2012).

© 2016 IBM Corporation47

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

I Had Hoped That Alan Would Critique The Model

© 2016 IBM Corporation48

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

I Had Hoped That Alan Would Critique The Model
Which He Did—By Rewriting It (Almost) From Scratch

© 2016 IBM Corporation49

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Modeling RCU Read-Side Critical Sections

let matched = let rec

 unmatchedlocks = Rcu_read_lock \ domain(matched)

 and unmatchedunlocks = Rcu_read_unlock \ range(matched)

 and unmatched = unmatchedlocks | unmatchedunlocks

 and unmatchedpo = (unmatched * unmatched) & po

 and unmatchedlockstounlocks = (unmatchedlocks *

 unmatchedunlocks) & po

 and matched = matched | (unmatchedlockstounlocks \

 (unmatchedpo ; unmatchedpo))

 in matched

flag ~empty Rcu_read_lock \ domain(matched) as unbalancedrculocking

flag ~empty Rcu_read_unlock \ range(matched) as unbalancedrculocking

let crit = matched \ (po^1 ; matched ; po^1)

Handles multiple and nested critical sections
and also reports errors on mismatches!!!

And is an excellent example of “mutually assured recursion” design

© 2016 IBM Corporation50

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Modeling RCU's Grace-Period Guarantee

let rcuorder = hb* ; (rfe ; acqpo)? ; cpord* ; fre? ; propbase* ; rfe?

let gplink = sync ; rcuorder

let cslink = po ; crit^1 ; po ; rcuorder

let rcupath0 = gplink |

 (gplink ; cslink) |

 (cslink ; gplink)

let rec rcupath = rcupath0 |

 (rcupath ; rcupath) |

 (gplink ; rcupath ; cslink) |

 (cslink ; rcupath ; gplink)

irreflexive rcupath as rcu

Handles arbitrary critical-section/grace-period combinations,
and also interfaces to remainder of memory model

© 2016 IBM Corporation51

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Modeling RCU's Grace-Period Guarantee

Handles arbitrary critical-section/grace-period combinations,
and also interfaces to remainder of memory model

And all of this in only 24 lines of code!!!

let rcuorder = hb* ; (rfe ; acqpo)? ; cpord* ; fre? ; propbase* ; rfe?

let gplink = sync ; rcuorder

let cslink = po ; crit^1 ; po ; rcuorder

let rcupath0 = gplink |

 (gplink ; cslink) |

 (cslink ; gplink)

let rec rcupath = rcupath0 |

 (rcupath ; rcupath) |

 (gplink ; rcupath ; cslink) |

 (cslink ; rcupath ; gplink)

irreflexive rcupath as rcu

© 2016 IBM Corporation52

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Small Example of Cat Language: Single-Variable SC

© 2016 IBM Corporation53

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Small Example of Cat Language: Single-Variable SC

 “rf” relation connects write to reads returning the value written: Causal!

 “co” relation connects pairs of writes to same variable

 “fr” relation connects reads to later writes to same variable

 “po-loc” relation connects pairs of accesses to same variable within given thread

 Result: Aligned machine-sized accesses to given variable are globally ordered

 Note: Full memory model is about 200 lines of code!

let com = rf | co | fr
let coherenceorder = poloc | com
acyclic coherenceorder

© 2016 IBM Corporation54

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

C-CO+o-o+o-o.litmus

© 2016 IBM Corporation55

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test: rf Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

© 2016 IBM Corporation56

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test: po-loc Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c

p
o

-l
o

c

© 2016 IBM Corporation57

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test: co Relationship

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

© 2016 IBM Corporation58

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test: fr Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

fr

© 2016 IBM Corporation59

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Single-Variable SC Litmus Test: Acyclic Check

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);
Cycle, thus forbidden!

(Cycles are a generalization of memory-barrier pairing)

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

fr

© 2016 IBM Corporation60

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Current Status and Demo

© 2016 IBM Corporation61

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Current Status and Demo

Release-candidate memory model (including litmus tests)
– http://www.rdrop.com/users/paulmck/scalability/paper/LCE-LinuxMemoryModel.2016.10.26a.tgz

Weak model: Work in progress...

Early reviews in progress, including this one

Demo: How to run model and capabilities

© 2016 IBM Corporation62

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Simple RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(y);

 rcu_read_unlock();

}

void P1(void)

{

 WRITE_ONCE(y, 1);

 synchronize_rcu();

 WRITE_ONCE(x, 1);

}

BUG_ON(r1 == 1 && r2 == 0);

C-RR-R+WW-G.litmus

© 2016 IBM Corporation63

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Bigger RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 smp_store_release(&z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = smp_load_acquire(&z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

C-RW-R+RW-Gr+RW-Ra.litmus

© 2016 IBM Corporation64

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Not All Communications Relations Are Created Equal

© 2016 IBM Corporation65

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Ordering vs. Time: The Reads-From (rf) Relation

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 1;
X =

=
0 X =

=
1

rf

Time

© 2016 IBM Corporation66

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time!

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1

co
Time

WRITE_ONCE(x, 1);

X =
=

0

WRITE_ONCE(x, 2);
X =

=
2

© 2016 IBM Corporation67

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time!

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X =

=
0 X =

=
1

fr

Time

© 2016 IBM Corporation68

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Can't HW Hide Non-Temporal Behavior From Users?

© 2016 IBM Corporation69

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Can't HW Hide Non-Temporal Behavior From Users?
Yes, But Not For Free (Many HW Tricks, Though)

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1
fr

Time

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X =

=
0

© 2016 IBM Corporation70

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Moral: More rf Links, Lighter-Weight Barriers!!!

© 2016 IBM Corporation71

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Hierarchy of Litmus Tests: Rough Rules of Thumb

Dependencies and rf relations everywhere
–No additional ordering required

 If all rf relations, can replace dependencies with acquire
–Some architecture might someday also require release, so careful!

 If only one relations is non-rf, can use release-acquire
–Dependencies can sometimes be used instead of release-acquire
–But be safe – actually run the model to find out exactly what works!!!

 If two or more relations are non-rf, strong barriers needed
–At least one between each non-rf relation
–But be safe – actually run the model to find out exactly what works!!!

But for full enlightenment, see memory models themselves:
– http://www.rdrop.com/users/paulmck/scalability/paper/LCE-LinuxMemoryModel.2016.10.26a.tgz

© 2016 IBM Corporation72

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Hierarchy of Memory Ordering: Rough Overheads

Read-write dependencies:
–Free everywhere

Read-read address dependencies:
–Free other than on DEC Alpha

Release/acquire chains and read-read control dependencies:
–Lightweight: Compiler barrier on x86 and mainframe, special

instructions on ARM, lightweight isync or lwsync barriers on PowerPC

Restore sequential consistency:
–Full memory barriers

• Expensive pretty much everywhere
• But usually affect performance more than scalability

© 2016 IBM Corporation73

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

How to Run Models

Download herd tool as part of diy toolset
–http://diy.inria.fr/sources/index.html

Build as described in INSTALL.txt
–Need ocaml v4.01.0 or better: http://caml.inria.fr/download.en.html

• Or install from your distro (easier and faster!)

Run litmus tests from previous two slides and the earlier one:
– herd7 -conf strong.cfg C-RR-R+WW-G.litmus
– herd7 -conf strong.cfg C-RW-R+RW-Gr+RW-Ra.litmus
– herd7 -conf strong.cfg C-RW-R+RW-G+RW-R.litmus

Other required files:
– linux.def: Support pseudo-C code
– strong.cfg: Specify strong model
– strong-kernel.bell: “Bell” file defining events and relationships
– strong-kernel.cat: “Cat” file defining actual memory model
– *.litmus: Litmus tests

© 2016 IBM Corporation74

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Hierarchy of Litmus Tests (1/3)

All rf relations and dependencies
–C-LB+ldref-o+o-ctrl-o+o-dep-o.litmus

All rf relations but one dependency removed
–C-LB+ldref-o+o-o+o-dep-o.litmus

Message passing with read-to-read address dependency
–C-MP+o-assign+o-dep-o.litmus

Message passing with lockless_dereference()
–C-MP+o-assign+ldref-o.litmus

All rf relations, acquire load instead of one dependency
–C-LB+ldref-o+acq-o+o-dep-o.litmus

© 2016 IBM Corporation75

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Hierarchy of Litmus Tests (2/3)

All rf relations, but all dependencies replaced by acquires
–C-LB+acq-o+acq-o+acq-o.litmus

One co relation, the rest remain rf relations
–C-WWC+o+acq-o+acq-o.litmus

One co, rest remain rf, but with release-acquire
–C-WWC+o+o-rel+acq-o.litmus

One co, one fr, and only one remaining rf relation
–C-Z6.0+o-rel+acq-o+o-mb-o.litmus

One co, one fr, one rf, and full memory barriers
–C-Z6.0+o-mb-o+acq-o+o-mb-o.litmus

© 2016 IBM Corporation76

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

A Hierarchy of Litmus Tests (3/3)

One co, one fr, one rf, and all but one full memory barriers
–C-3.SB+o-o+o-mb-o+o-mb-o.litmus

One co, one fr, one rf, and all full memory barriers
–C-3.SB+o-mb-o+o-mb-o+o-mb-o.litmus

 IRIW, but with release-acquire
–C-IRIW+rel+rel+acq-o+acq-o.litmus

 Independent reads of independent writes (IRIW), full barriers
–C-IRIW+o+o+o-mb-o+o-mb-o.litmus

Additional examples in the Examples.html file in the tarball:
– http://www.rdrop.com/users/paulmck/scalability/paper/LCE-LinuxMemoryModel.2016.10.26a.tgz

© 2016 IBM Corporation77

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Current Model Capabilities ...

READ_ONCE() and WRITE_ONCE()

smp_store_release() and smp_load_acquire()

 rcu_assign_pointer()

 rcu_dereference() and lockless_dereference()

 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu()
–Also synchronize_rcu_expedited(), but same as synchronize_rcu()

smp_mb(), smp_rmb(), smp_wmb(), and
smp_read_barrier_depends()

xchg(), xchg_relaxed(), xchg_release(), and xchg_acquire()

© 2016 IBM Corporation78

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

… And Limitations

As noted earlier:
–Compiler optimizations not modeled
–No arithmetic
–Single access size, no partially overlapping accesses
–No arrays or structs (but can do trivial linked lists)
–No dynamic memory allocation
–Read-modify-write atomics: Only xchg() and friends for now
–No locking (but can emulate locking operations with xchg())
–No interrupts, exceptions, I/O, or self-modifying code
–No functions
–No asynchronous RCU grace periods, but can emulate them:

• Separate thread with release-acquire, grace period, and then callback code

© 2016 IBM Corporation79

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Summary

© 2016 IBM Corporation80

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Summary

We have automated much of memory-barriers.txt
–And more precisely defined much in it!
–Subject to change, but good set of guiding principles

First realistic formal Linux-kernel memory model

First realistic formal memory model including RCU

Hoped-for benefits:
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling

© 2016 IBM Corporation81

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Summary

We have automated much of memory-barriers.txt
–And more precisely defined much in it!
–Subject to change, but good set of guiding principles

First realistic formal Linux-kernel memory model

First realistic formal memory model including RCU

Hoped-for benefits:
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling
–Satisfy those asking for it!!!

© 2016 IBM Corporation82

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

To Probe Deeper: Memory Models
 “Simulating memory models with herd”, Alglave and Maranget (herd manual)

– http://diy.inria.fr/tst/doc/herd.html

 “Herding cats: Modelling, Simulation, Testing, and Data-mining for Weak Memory”, Alglave et al.
– http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/toplas14.pdf

 Download page for herd: http://diy.inria.fr/herd/

 LWN article for herd: http://lwn.net/Articles/608550/ For PPCMEM: http://lwn.net/Articles/470681/

 Lots of Linux-kernel litmus tests: https://github.com/paulmckrcu/litmus

 “Understanding POWER Multiprocessors”, Sarkar et al.
– http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf

 “Synchronising C/C++ and POWER”, Sarkar et al.
– http://www.cl.cam.ac.uk/~pes20/cppppc-supplemental/pldi010-sarkar.pdf

 “Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA”, Flur et al.
– http://www.cl.cam.ac.uk/~pes20/popl16-armv8/top.pdf

 “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models”, Maranget et al.
– http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

 Lots of relaxed-memory model information: http://www.cl.cam.ac.uk/~pes20/weakmemory/

 “Linux-Kernel Memory Model”, (informal) C++ working paper, McKenney et al.
– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0124r2.html

© 2016 IBM Corporation83

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

To Probe Deeper: RCU
 Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

– http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
– http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

 McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
– http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
– http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

 McKenney: “Structured deferral: synchronization via procrastination”
– http://doi.acm.org/10.1145/2483852.2483867
– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 McKenney et al: “User-space RCU”
– https://lwn.net/Articles/573424/

 McKenney: “Requirements for RCU”
– http://lwn.net/Articles/652156/ http://lwn.net/Articles/652677/ http://lwn.net/Articles/653326/

 McKenney: “Beyond the Issaquah Challenge: High-Performance Scalable Complex
Updates”

– http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.09.19i.CPPCON.pdf

 McKenney, ed.: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

© 2016 IBM Corporation84

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of their employers.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2016 IBM Corporation85

Linux Plumbers Conference Memory-Ordering BoF, November 3, 2016

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

