Device Tree Plumbers 2015

Dynamic DT and tools

Pantelis Antoniou <pantelis.antoniou@konsulko.com>

mailto:pantelis.antoniou@konsulko.com

Device Tree Overlays overview and
use cases

A ALH B L _'m x o

+ Device Tree Overlays are now In the mainline kernel. This session
will cover what they are, how they are used.

+ Device tree overlays
+ Device tree changeset
+ The phandle resolution mechanism

+ Overlay overlap removal checks

+ Device tree variants (or quirks).

Overlays Describe Hardware

+ Hardware may not be static; not known at boot time.
+ Capes, Hats, Expansion boards

+ FPGAs

+ Weird topology/device requirements

+ Or hardware Is static, but using overlays is easier to manage.|0s
of board variants, would require a different DTB for each. Hard
to do In the bootloader. Easier just to use an overlay.

+ Useful even on busses that can be probed. [2C devices on a PCl/
USB host bus device.

CONHG_OF_DYNAMIC

L Ra A -'L\‘h _'\ S ru

+ Allows modification of the Live Device Tree at runtime.
+ Not very widely used until now — only on Power.
+ Destructive editing of the live tree

+ Non atomic

+ Changes cannot be reverted

+ No connection to the bus driver model; changes to the live tree
do not get reflected.

+ Part of the puzzle, but not enough as it was.

Part |: Reworking OF_DYNAMI

A AW o

+ /proc = /sys (gcl)

+ struct device_node now a kobj (gcl)

+ drivers/of/dynamic.c

+ Semantics of the of_reconfig notifiers have changed.

+ Major new user s dt selftests. Test case data dynamically inserted.

+ Already accepted in mainline (3.17)

=

Part 2: Dynamic Resolution (foc dts)

/* foo.dts x/
/dts-vl1/;

/ A

bar = <&F00>;

FOO: foo { };

hLts A N N

/* compiles to bar = <1>; x/

/* dtc assigns value of 1 to foo phandle x/

Dynamic Resolution (qux.dts)

v RNEY SR et
= /* qux.dts x/
R /dts-vl/;
/plugin/;
/ A
gqux = <&BAZ>; /* compiles to qux = <1>; x/
quux = <&F00>; /* 7?7 Only possible to resolve on runtime *x/
BAZ: baz { }; /* dtc assigns value of 1 to baz phandle x/

Resolving phandles

A ALH B L _'m x o

+ Phandles are pointers to other parts in the tree. For example
pInmuxing, interrupt-parent etc.

+ Phandles are internally represented by a single 32 scalar value
and are assigned by the DTC compiler when compiling

+ Extension to the DTC compiler required, patchset already in v2,
minor rework Is required.

+ “dtc: Dynamic symbols & fixup support (v2)”

=

Changes made to the DT Compiler

+ ABSOLUTELY NO CHANGES TO THE DTB FORMAT.
+ -@ command line option global enable.

+ (Generates extra nodes in the root (__symbols__, _ fixups__,
__local_fixups__) containing resolution data.

+ /plugin/ marks a device tree fragment/object (controls generation
of _ fixups__and __local_fixups__ nodes).

+ To perform resolution the base tree needs to be compiled using
the -@ option and causes generation of __symbols__ node only.

Compliling foo.dts (base tree)

e PENEY SRR SNt
~ $ dtc -0 dtb -o foo.dtb -b @ —-@ foo.dts && fdtdump foo.dtb
- IV

bar = <0x00000001>;

foo {
linux,phandle = <0x00000001>;
phandle = <0x00000001>;

}i

__symbols__ {
FOO = "/foo";

b

Compliling qux.dts (object)

$ dtc -0 dtb -0 qux.dtbo -b @ -@ qux.dts && fdtdump qux.dtbo

=~
/ o
qux = <0x00000001>;
quux = <0@xdeadbeef>;
baz {
linux,phandle = <0x00000001>;
phandle = <0x00000001>;
¥
__symbols__ { BAZ = "/baz"; };
__fixups__ { FOO = "/:quux:0"; };
__local_fixups__ { fixup = "/:qux:0"; };

}s

How the resolver works

+ Get the max device tree phandle value from the live tree + |.
+ Adjust all the local phandles of the tree to resolve by that amount.

+ Using the __local__fixups__ node information adjust all local
references by the same amount.

+ For each property in the __fixups__ node locate the node it
references in the live tree. This is the label used to tag the node.

+ Retrieve the phandle of the target of the fixup.

+ For each fixup in the property locate the node:property:offset
location and replace it with the phandle value.

Part 3: Changesets/ Iransactions

A ALH B L _'m x o

+ A Device Tree changeset is a method which allows us to apply a
set of changes to the live tree.

+ Either the full set of changes apply or none at all.

+ Only after a changeset is applied notifiers are fired; that way the
recelvers only see coherent live tree states.

+ A changeset can be reverted at any time.

+ Part of mainline as of 3.17.

Changesets In kernel AP

A ALH B L _'m x o

+ Issue of_changeset_init () to prepare the changeset.

+ Perform your changes using of_changeset_
{attach_node|detach_node|add_property|
remove_property|update_property}()

+ Lock the tree by taking the of_mutex;
+ Apply the changeset using of_changeset_apply();

+ Unlock the tree by releasing of_mutex.

+ To revert everything of_changeset_revert();

Changesets helpers

S . o ” led ™

~ + Using changesets manually is a chore,
+ “of: changesets: Introduce changeset helper methods”

+ Dynamically allocates memory;to wit instead of using the raw AP,
struct property *prop;
prop = kzalloc(sizeof(*prop)), GFP_KERNEL);
prop->name = kstrdup("compatible");
prop->value = kstrdup("foo,bar");
prop->length = strlen(prop->value) + 1;

of_changeset_add_property(ocs, np, prop);

+ While using the helper API

of _changeset_add_property_string(ocs, np, “compatible", "foo,bar");

=

Device Tree Overlay format

N

/plugin/;
/ 1
/* set of per-platform overlay manager properties */
fragment@@ {
target = <&target-label>; /* or target-path x/
__overlay__ A
/* contents of the overlay x/
¥
¥
fragment@l {

/* second overlay fragment... */

};

LY

NN

=

Device Tree Overlay in kernel AP

LT -

+ Get your device tree overlay blob in memory — using a call to
request_firmware() call, or linking with the blob is fine.

+ Use of_fdt_unflatten_tree() to convert to live tree
format.

+ Call of_resolve_phandles() to perform resolution.

+ Call of_overlay_create() to create & apply the overlay.

+ Call of _overlay_destroy() to remove and destroy the
overlay. Note that removing overlapping overlays must be
removed In reverse sequence.

New functionality in the pipeline

TS R AN bt

+ The target is a fixed point in the base device tree. Problematic if

you have plan to connect the same hardware device to different
slots.

+ Indirect targets solve this by having a re-direction method.

+ Posted a patch but Guenter's posted a better one reworked :)

Overlays, some times a good idea.

+ Overlays are powerful. Sometimes too powerful.
+ Good uses:
+ Pluggable expansion boards with an identifying method.

+ Hardware hackers testing designs

+ FPGAs

+ Anything that is a result of an action that changes the
hardware topology (1.e. DRM monitor connections)

Overlays sometimes a bad Idea.

A ALH B L _'m x o

+ Static changes to a board revision can be expressed via an
Overlay, but it's late in the boot sequence. Early stuff (like
regulators and clocks) the changes cannot affect those. Better to
use a quirk (or variant)

+ Generating device tree nodes and properties automatically. l.e.
PCI/USB device node generation (either firmware assisted or
not). Changesets is the way to go.

+ General rule: if the resulting change in the kernel tree requires
smarts, it's best to create everything via changesets.

Overlays and tools for sanity.

A ALH B T _'m x o

+ Device Tree overlays represent a big change for the device tree
in the kernel.Where as of old the device tree was something
static; now It's something that can change at runtime.

+ We could use some new tools to help us when creating them
(compille time) and some kernel tooling to help when applying
them (run time).

Compile time overlay tooling

+ Right now the changes to DTC are minimal.
+ Overlay is compiled without a reference to the base DTS.

+ Need an option to compile against a base DTS to validate that
the overlay will load.

+ For testing purposes a method to generate at compile time the
DTS resulting from an application of an overlay.

+ New APIs are even more demanding for example portable
connector based overlays will need property matching.

+ DT diff! Generate an overlay to patch DTBs.

Compile time overlay tooling

-+

A ALH B T _'m x o

Device Tree overlays represent a big change for the device tree in the kernel.Where
as of old the device tree was something static; now it's something that can change at
runtime.

We could use some new tools to help us when creating them (compile time) and
some kernel tooling to help when applying them (run time).

Frank's NOTE:

+ Overlays tools needed: generating, test, validation
From Rob's email comments:

+ How to test an overlay applies?

+ Generating a dtb from dts + overlay dts.

+ Generating an overlay from a diff of old and new dts (overlay as a way to
update old dtbs)

Runtime time overlay tooling

A ALH B T _'m x o

+ Not just an overlay problem.There is no acceptable type
information for properties.

+ That means that one could modify the kernel live tree with
properties that make no sense.

+ How to carry type information (and perform checks).

+ of_reconfig notifiers could be used, but doing it manually Is
madness.

+ Need to store the type information in the DT itself.

Device Tree probe order and parallel
device probing - Pantelis

A ALH B L _'m x o

+ Making the phandle resolver to work means that phandles and
the location where they are references are tracked.

+ Makes it possible to track dependencies of one subtree to
another.

+ Device references a DMA channel? That device is dependent
on the DMA controller driver.

+ We can create a schedule of device probes.

+ Trivially we can create a parallel schedule of device probes.

Why probe order is a problem!?

- 'L\‘h LN SL ru

+ Not all drivers handle correctly EPROBE_DEFER.
+ Excessive defers slow down kernel boot.

+ People pepper the kernel with subsys_init() calls to force
ordering.

+ Device tree dependency tracking not the first time attempted.

+ Deferred probe patches are floating around.

Driver core changes request?

A ALH B L _'m o o

+ The order of probe calls is not the order of calling
device_create(). It is actually much later when the driver is
matched to a device.

+ Making all this work for device tree 1s OK, but we need to handle
other methods (yay for x86).

+ Device core should track dependencies and probe order,
backend should fill it in.

| Thank you for listening

Devicetree Overlay use at Juniper Networks

Guenter Roeck
groeck@juniper.net

System Overview

 PTX5000 Packet Transport Router

- Routing Engine
* Routing protocols, administrative tasks
 Interfaces to other cards in the system

- 8 X FPC (Flexible PIC Concentrator)
e 2 XPIC per FPC
— Control Board
« 9 x SIB (Switch Interface Board) per CB
— All cards identified using 12C EEPROMs

- Card connectors use multiple interface types
* 12C, GPIO, PCle, SERDES, ...

- Various CPU types
« P2020, P5020, P5040, x86

Devicetree overlay use

* All OIR capable cards managed with devicetree
overlays

- RE

 FPCs, Fan tray, power supply, ...
- FPC

 PICs
- Control Board

e SIBs

 Each card represented as 'connector' node In
devicetree data

'‘connector' nodes

picO {
compatible = "jnx,pic-connector”, "simple-bus";
slot = <0>;
auto-enable;
ovname = "jnx_pic0", "jnx_picO_pwr";
presence-detect-gpios = <&gpio20 148 0x1>; /* active low */
attention-button-gpios = <&gpio20 150 0x1>; /* active low */
power-enable-gpios = <&gpio20 154 0x0>; /* active high */
power-status-gpios = <&gpio20 151 0x0>; /* active high */

reset-gpios = <&gpio20 153 0x1>; [* active low */
power-enable-timeout = <2000>; [*in ms */
attention-button-holdtime = <3000>; [*in ms */
activation-timeout = <5000>; [*inms */

debounce-interval = <1>;
led-green = <&picO_green>;
led-red = <&pic0_red>;

12c-bus {
#address-cells = <1>;
#size-cells = <0>;

i2c-parent = <&pic0i2c>;

eeprom@54 {
compatible = "atmel,24c02";
reg = <0x54>;
ideeprom;

Connector driver

* Functionality

- Manages card insertion and removal

- Responsible for loading and removing devicetree
overlays

- State machine with 10 states and 12 events

e Status

- Reliably loads and removes overlays
- Some limitations and concerns

Limitations

« Power management

- After enabling power, chips may be immediately
visible on bus

 PCle: hotplug driver attempts to load driver before
overlay is loaded

- Kind of solved by using layered overlays

* First overlay inserted after card identified, prior to
enabling power

e Second overlay inserted after power enabled and stable

Limitations

 |ndirect target support

— Currently requires information within overlay for
each slot

- Problematic if card is re-used in a different chassis
- Limited scalabillity

- Proposal: Simplify APl by providing reference(s)
from calling code

e of overlay_indirect() gets reference(s) instead of slot
number as parameter

Limitations

« No DT / DT Overlay support on x86

- Mandatory for us

— Other solutions either not feasible or not scalable

 ACPI

— Not supported on all architectures
- No overlays

 Platform data is clumsy
- Requires new driver / code for each new card

« Card management from user space does not work
- Yes, we tried ...

- Implemented and working with small patch set on top
of upstream kernel

