
Device Tree Tools

What tools exist to support device tree development
and debugging?

Where are they?

What new tools have been proposed or requested?

 Frank Rowand, Sony Mobile Communications August 11, 2015
 150813_2112

Static Tools

dtdiff
Compare:
 - Source (.dts, .dtsi)
 - Binary blob (.dtb)
 - file system trees (eg EDT)

FDT and EDT are from the target system
 FDT is /sys/firmware/fdt
 EDT is /proc/device-tree
 (currently a link to /sys/firmware/devicetree/base)

dtdiff
Device tree data can be modified by

 - build and install

 - boot loader

 - boot

 - running kernel

dtdiff - improvements
Does not properly handle #include and /include/
for .dts and .dtsi files in the normal locations in
the Linux kernel source tree.

Work In Progress patch to fix this and to add
features such as pre-process single .dts file is at:

 http://elinux.org/Device_Tree_frowand

.dtb ---> .dts
A common problem that dtdiff does not solve:

 A property is defined (and re-defined) in
 multiple .dts and .dtsi files.

 Which of the many source locations is the
 one that ends up in the .dtb?

.dtb ---> .dts
current solution:
 scan the cpp output, from bottom to top, for
 the cpp comment that provides the file name

cpp output is available at
 ${KBUILD_OUTPUT}/arch/${ARCH}/boot/dts/XXX.dts.dtb.tmp

 for XXX.dtb

Incomplete solution:
 dtc /include/ directive not processed

DT Source Validation attempts
March 2012, Jon Smirl
 http://news.gmane.org/find-root.php?message_id=
 CAKON4OyW00PUX3-50GrMSa0RhXLHZX3abjQmVHHiYPY2DCN%3dmw@mail.gmail.com

RFC by Benoit Cousson and Fabien Parent
 http://thread.gmane.org/gmane.linux.ports.arm.kernel/268685

RFC by Tomasz Figa
 http://thread.gmane.org/gmane.linux.ports.arm.kernel/274640

RFC by Stephen Warren
 http://thread.gmane.org/gmane.linux.ports.arm.kernel/275896

RFC by Tomasz Figa
 http://thread.gmane.org/gmane.comp.devicetree.compiler/56

source: Tomasz Figa's elc 2014
 Trees need care: A Solution to Device Tree
 Validation Problem
 http://elinux.org/images/3/35/ELC14-Device_Tree_validation_0.pdf

Kernel Config

What config options are required to enable the
drivers and frameworks that are required to
use the nodes specified in a device tree?

 There are at least three tools to generate
 a list of config options or a config.

Dynamic Tools
Debugging Boot Problems

Investigating problems with:

 - create devices

 - register drivers

 - bind drivers to devices

 - run time modification of the device tree

dt_node_info - What is this tool?
/proc/device-tree and /sys/devices provide visibility
into the state and data of
 - Flattened Device Tree
 - Expanded Device Tree
 - Devices

dt_stat script to probe this information to
 create various reports

dt_node_info packages the information from
 dt_stat in an easy to scan summary

dt_node_info - Where do I get it?
Work In Progress patch is at:

 http://elinux.org/Device_Tree_frowand
 http://elinux.org/images/a/a3/Dt_stat.patch

Dependency:

 requires device tree information to be present in sysfs

Tested:

 only on Linux 4.1-rc2, 4.2-rc5 dragonboard

Might work as early as Linux 3.17. Please let me know
if it works for you on versions before 4.1.

dt_stat - usage:
$ dt_stat --help

usage:
 dt_stat

 -h synonym for --help
 -help synonym for --help
 --help print this message and exit

 --d report devices
 --n report nodes
 --nb report nodes bound to a driver
 --nd report nodes with a device
 --nxb report nodes not bound to a driver
 --nxd report nodes without a device

Example - device not created
$ dt_node_info coincell
===== devices

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

===== nodes bound to a driver

===== nodes with a device

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

===== nodes without a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

Example - driver not bound
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes without a device

dyndbg - example 1
Was the driver registered at boot?
On the correct type bus?

----- Target system -----

Kernel command line: debug
 dyndbg="func bus_add_driver +p"

$ dmesg | grep "add driver"
bus: 'platform': add driver CCI-400 PMU
bus: 'platform': add driver CCI-400
...

Examples of bus types skip
$ dmesg | grep "add driver"
bus: 'platform': add driver gcc-msm8974
bus: 'i2c': add driver dummy
bus: 'mdio_bus': add driver Generic PHY
bus: 'usb': add driver hub
bus: 'qcom_smd': add driver wcnss_ctrl
bus: 'spmi': add driver pmic-spmi
bus: 'scsi': add driver sd
bus: 'spi': add driver m25p80
bus: 'mmc': add driver mmcblk
bus: 'amba': add driver mmci-pl18x
bus: 'hid': add driver hid-generic

dyndbg - example 2
Was the driver probe successful at boot?

----- Target system -----

Kernel command line:
 dyndbg="func bus_add_driver +p"
 dyndbg=”func really_probe +p”

$ dmesg | grep coin
bus: 'platform': add driver qcom,pm8941-coincell
bus: 'platform': really_probe: probing driver qcom,pm8941-coincell
 with device fc4cf000.spmi:pm8941@0:qcom,coincell@2800
qcom,pm8941-coincell: probe of fc4cf000.spmi:pm8941@0:qcom,
 coincell@2800 failed with error -22

dyndbg - example 3
Deferred probe issues

----- Target system -----

Kernel command line:
 dyndbg="func deferred_probe_work_func +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_del +p"

Typical driver binding patterns skip
Make these substitutions on the following slides

 BUS --- the bus name

 DEV --- the device name

 DVR --- the driver name

Device Creation ---> probe skip
 create child: NODE
device: 'DEV': device_add
bus: 'BUS': driver_probe_device: matched device DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Driver Register ---> probe skip
bus: 'BUS': add driver DVR
bus: 'BUS': driver_probe_device: matched device DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Deferred Probe ---> re-probe skip
bus: 'BUS': add driver DVR
device: 'DEV': device_add
bus: 'BUS': driver_probe_device: matched device DEV with DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

BUS DEV: Driver DVR requests probe deferral
BUS DEV: Added to deferred list
BUS DEV: Retrying from deferred list
bus: 'BUS': driver_probe_device: matched DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Useful data: device and driver
Summary:

 dyndbg="func of_platform_bus_create +p"
 dyndbg="func bus_add_driver +p"
 dyndbg="func device_add +p"
 dyndbg="func driver_probe_device +p"
 dyndbg="func really_probe +p"
 dyndbg="func driver_bound +p"
 dyndbg="func deferred_probe_work_func +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_del +p"

Properties probed on target
vs. contents of .dts
Proof of concept.
Not quite ready for prime time.

 drivers/of/base.c | 44 ++++++++-
 dt_prop | 249 ++++++++++++++++...
 slash_to_brace.c | 76 ++++++++++++++++
 3 files changed, 362 insertions(+),
 7 deletions(-)

Properties probed vs .dts (1/2)
--- Properties accessed on the Target
+++ Properties present in the Host .dts
--- console_log_dt_prop
+++ arch/arm/boot/dts/qcom-apq8074-dragonboard.dts
 / {
- #interrupt-cells;
- dma-coherent;
- serial-number;
+ model = <>;
 aliases {
- compatible;
 };
 chosen {
- compatible;
 };
 cpu-pmu {
- assigned-clock-parents;
- assigned-clock-rates;
- interrupt-parent;
- interrupts-extended;
- pinctrl-0;
- qcom,no-pc-write;
- reg;
 };
 cpus {
- compatible;
+ #size-cells = <0x1>;
+ interrupts = <>;
 cpu@0 {
+ next-level-cache = <>;
+ qcom,acc = <>;
 };

Properties probed vs .dts (2/2)
 idle-states {
- compatible;
 spc {
- idle-state-name;
- local-timer-stop;
- wakeup-latency-us;
 };
 };
 l2-cache {
+ cache-level = <>;
+ qcom,saw = <>;
 };
 };
 memory {
- compatible;
+ reg = <>;
 };
 soc {
- #interrupt-cells;
- clock-ranges;
- dma-coherent;
- dma-ranges;
- interrupt-parent;
 clock-controller@f9088000 {
- dma-coherent;
- interrupts;
- interrupts-extended;
- reg-names;
 };

Properties probed vs .dts skip
Some false positives.
 soc {
- #interrupt-cells;
- clock-ranges;
- dma-coherent;
- dma-ranges;
- interrupt-parent;

Starting at a child node, OF code chases through
parents, then follows interrupt-parent phandle:
 OF_FND -22 /soc/serial@f991e000 interrupt-parent 0
 OF_FND -22 /soc #interrupt-cells 0
 OF_FND -22 /soc interrupt-parent 0
 OF_FND -22 / #interrupt-cells 0
 OF_FND 0 / interrupt-parent 4
 OF_FND 0 /soc/interrupt-controller@f9000000 #interrupt-cells 4

Driver or Framework Messages
$ dmesg | grep xxx

bus: 'platform': add driver qcom,pm8941-xxx

bus: 'platform': really_probe: probing driver qcom,pm8941-xxx
 with device fc4cf000.spmi:pm8941@0:qcom,xxx@2800

qcom,pm8941-xxx: probe of fc4cf000.spmi:pm8941@0:qcom,
 xxx@2800 failed with error -22

----- Not so good -----

Can read and find problem in
 - .dts and dt bindings document

Can read and/or debug
 - driver, subsystem framework, and/or OF source

Driver or Framework Messages
$ dmesg | grep xxx

bus: 'platform': add driver qcom,pm8941-xxx

bus: 'platform': really_probe: probing driver qcom,pm8941-xxx
 with device fc4cf000.spmi:pm8941@0:qcom,xxx@2800

qcom,pm8941-xxx:fc4cf000.spmi:pm8941@0:qcom,xxx@2800:
 can't find 'qcom,rset-ohms' in DT block

qcom,pm8941-xxx: probe of fc4cf000.spmi:pm8941@0:qcom,
 xxx@2800 failed with error -22

----- Good -----

Provides clear description of what to fix

Driver & Framework Messages
If enough information is provided in driver and
framework error messages then DT source errors
should be solvable without reading the driver
source.

What is the state of the typical driver and
framework error messages?

Other Random
- fdtdump
- fdtget
- fdtput

.dtb instance version
 analogous to kernel version, build #, time, location
 eg. /proc/version

Discussion - what can we do?
Current pain points.

Insufficient documentation, examples, tutorials?

What types/classes of problems would be easier
to resolve with new tools?

 - What tools?

What existing tools need to be improved?

 - In what ways do they need improvement?

Resources
http://elinux.org/Device_Tree_frowand

 - Tools referenced in this talk

 - "Solving Device Tree Issues"
 LinuxCon North America 2015 / Linux
 Plumbers 2015 refereed track

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

