
Pushing the Limits of Kernel Networking1

Pushing the Limits of
Kernel Networking

Networking Services Team, Red Hat
Alexander Duyck
August 19th, 2015



Pushing the Limits of Kernel Networking2

Agenda

● Identifying the Limits
● Memory Locality Effect
● Death by Interrupts
● Flow Control and Buffer Bloat
● DMA Delay

● Performance
● Synchornization Slow Down
● The Cost of MMIO
● Memory Alignment, Memcpy, and Memset
● How the FIB Can Hurt Performance

● What more can be done?



Pushing the Limits of Kernel Networking3

Identifying the Limits

● With 60B frames achieving line rate is difficult
● Only 24B of additional overhead per frame
● 10Gb/s / 125MB/Gb / 84Bpp = 14.88Mpps, 67.2nspp

● L3 cache latency on Ivy Bridge is about 30 cycles
● Each nanosecond an E5-2690 will process 2.6 cycles
● 30 cycles / 2.6 cycles/ns = 12ns

● To achieve line rate at 10G we need to do two things
● Lower processing time
● Improve scalability 



Pushing the Limits of Kernel Networking4

Memory Locality Effect

● NUMA – Non-uniform memory access



Pushing the Limits of Kernel Networking5

Memory Locality Effect

● DDIO - Data Direct I/O
● Xeon E5 26XX Feature
● Local socket only
● No need for memory 

access

● XPS – Transmit Packet Steering
● Transmit packets on local CPU

echo 01 > /sys/class/net/enp5s0f0/queues/tx­0/xps_cpus
echo 02 > /sys/class/net/enp5s0f0/queues/tx­1/xps_cpus
echo 04 > /sys/class/net/enp5s0f0/queues/tx­2/xps_cpus
echo 08 > /sys/class/net/enp5s0f0/queues/tx­3/xps_cpus



Pushing the Limits of Kernel Networking6

Death by Interrupts

● Interrupts can change location based on irqbalance

● Too low of an interrupt rate
● Overrun ring buffers on device
● Add unnecessary latency
● Overrun socket memory if NAPI shares CPU

● Too high of an interrupt rate
● Frequent context switches
● Frequent wake-ups

● Interrupt moderation schemes often tuned for 
benchmarks instead of real workloads



Pushing the Limits of Kernel Networking7

Flow Control and Buffer Bloat

● Flow control can siginficantly harm performance
● Adds additional buffering, adding extra latency
● Creates head-of-line blocking which limits throughput

● Faster queues drop packets waiting on slowest CPU

● Some NICs implement per-queue drop when disabled

● Disabling it requires just one line in ethtool
ethtool ­A enp5s0f0 tx off rx off autoneg off



Pushing the Limits of Kernel Networking8

DMA Delay

● IOMMU can add security but at significant overhead
● Resource allocation/free requires lock
● Hardware access required to add/remove resources

● If you don't need it you can turn it off
intel_iommu=off

● If you need it for virualization (KVM/XEN)
iommu=pt

● Some drivers include mitigation strategies

● Page reuse



Pushing the Limits of Kernel Networking9

Performance Data Ahead!!!

● Single socket Xeon E5-2690v3

● Dual port 82599ES
● Assigned addresses 192.168.100.64 & 192.168.101.64
● Disabled flow control
● Pinned IRQs 1:1
● Used ntuple filter to force flows to specific queues

● CPU C states disabled via cpu /dev/cpu_dma_latency

● Traffic generator sent IP data w/ RR source address
● Each frame sent 4 times before moving to next address

● Your Experience May Vary



Pushing the Limits of Kernel Networking10

Routing Performance

1 2 3 4 5 6 7 8 9 10 11 12
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

RHEL 7.1

Threads

P
a

ck
e

ts
 P

e
r 

S
e

co
n

d



Pushing the Limits of Kernel Networking11

Synchronization Slow Down

● Synchronization primitives come at a heavy cost
● local_irq_save/resore costs 10s of ns

● Not needed when all requests are in same context

● rmb/wmb flush pipelines which adds delay
● Needed for some architectures but not others

● Updated kernel to remove unecessary bits in 3.19
● NAPI allocator for page fragments and skb
● dma_rmb/wmb for DMA memory ordering



Pushing the Limits of Kernel Networking12

The Cost of MMIO

● MMIO write to notify device can cost hundreds of ns

● Latency shows up as either Qdisc lock, or Tx queue 
unlock overhead

● xmit_more was added to 3.18 kernel to address this
● Reduces MMIO writes to device
● Reduces locking overhead per packet
● Reduces interrupt rates as packets are coalesced
● Allows for 10Gbps line rate 60B packets w/ pktgen



Pushing the Limits of Kernel Networking13

Memory Alignment, Memcpy, and Memset

● Partial cache-line writes come at a cost
● Most architectures now start with NET_IP_ALIGN = 0
● On x86 partial writes trigger a read, modify, write cycle

● String ops change implementation based on CPU flags
● erms and rep_good can have impact on performance
● KVM doesn't copy CPU flags by default

● tx-nocache-copy
● Enabled use of movntq for user to kernel space copy
● Enabled by default for kernels 3.0 – 3.13
● Prevents use of features such as DDIO

ethtool ­K enp5s0f0 tx­nocache­copy off



Pushing the Limits of Kernel Networking14

How the FIB Can Hurt Performance

● Starting w/ version 4.0 of kernel fib_trie was rewritten
● FIB statistics were made per CPU and not global
● Penalty for trie depth significantly reduced
● Kernel 4.1 merged local and main trie for further gains

● Recommendations for kernels prior to 4.0
● Disable CONFIG_IP_FIB_TRIE_STATS in kernel config
● Avoid assigning addresses such as 192.168.122.1

● IPs in the range 192.168.122.64 – 191 can reduce depth by 1

● Use class A reserved addresses to reduce trie walk
● 10.x.x.x likely will contain fewer bits than 192.168.x.x



Pushing the Limits of Kernel Networking15

Routing Performance

1 2 3 4 5 6 7 8 9 10 11 12
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

RHEL 7.1

RHEL 7.2 Alpha

Threads

P
a

ck
e

ts
 P

e
r 

S
e

co
n

d



Pushing the Limits of Kernel Networking16

What More Can be Done?

● SLAB/SLUB bulk allocation
● https://lwn.net/Articles/648211/

● Tuning interrupt moderation to work in more cases
● Pktgen with 60B packets

● Explore optimizing users for memset/memcpy()
● build_skb()

● Find a way to better use xmit_more on small packets

● Explore shortening Tx/Rx queue lengths

https://lwn.net/Articles/648211/


Pushing the Limits of Kernel Networking17

Routing Performance

1 2 3 4 5 6 7 8 9 10 11 12
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

RHEL 7.1

RHEL 7.2 Alpha

Tweaked 7.2 Alpha

Threads

P
a

ck
e

tr
s

 P
e

r 
S

e
co

n
d



Pushing the Limits of Kernel Networking18

Questions?

● Alexander Duyck
● alexander.h.duyck@redhat.com
● AlexanderDuyck@gmail.com

mailto:alexander.h.duyck@redhat.com
mailto:AlexanderDuyck@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

