

Using CRIU for Computer Architecture
and Software Optimization Studies

Or: Getting Results Faster
and With Less Work

Christopher Covington
August 20th, 2015

Terminology

● How zoomed in or zoomed out is the checkpoint?
("Amount of state saved")

– System level (QEMU snapshots)

– OS level (TuxOnIce)

– Application level (CRIU)

● What provides the checkpointing facilities?
("System architecture")

– Externally driven (QEMU snapshots)

– Self-hosting (TuxOnIce, CRIU)

Terminology

● System types
– “Functional” models

– “Timing” models

– Hardware description language simulators

● Fast forwarding: dumping a checkpoint on a fast
system and restoring it on a slow system

Long Application

Long Application, Fast Forwarded

Fast Forwarding Assumptions

● Determinism: Starting from the same initial state
and running for the same duration faithfully
recreates subsequent state

● Checkpointing: Checkpoints faithfully recreate
initial state

Linux Facilities Used Alongside CRIU

● perf_events framework counting instructions for
fast-forwarding (have tried software breakpoints via
gdb)

● Stop signal (should maybe upgrade to cgroups
freezer)

Fast Forwarding using CRIU

Architecturally executed instructions the basic unit of measurement.

On fast system:

ptrace-wait $pid $(($isize * $inum))

criu dump -j -t $pid

On slow system:

criu restore

perf stat -t $pid

ptrace-wait $pid $isize

Sampling to Avoid Redundant Work

SMARTS statistical sampling
http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling

SimPoint k-means clustering
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

sort uniq

http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

Setup/Special Case of 0 Instructions

stopexec logfile -- application arg1 arg2

criu dump -j -t $pid

Cold Start Effects

● Excess page faults observed immediately after
restore

● Currently working around these by dumping
checkpoints pretty far in advance

● Better approach?

Ptrace Poke Side Effects

● Sharing of physical pages is broken (copy-on-write
kicks in) for first page when it is ptrace poked

● Not so significant for 4K pages, but potentially
significant for 64K pages

● Could the copy-on-write be undone?
● Could the poke be done elsewhere? VDSO?

Dump and Restore of perf_events and
ftrace

● Current implementation keeps perf_event file
descriptors outside of the CRIU-dumped process
tree

● Would it be useful to dump and restore perf_event
file descriptors? What about ftrace?

● How to ignore, or count and compensate for,
parasite activity (such as instructions) when dumpee
is being traced?

Self-Restoring Checkpoints

● Analogous to the self-unpacking Linux kernel
zImage, link restorer code, data, and executable
together in a single binary

● For my use case, this is a system level checkpoint
● Can trim it down to contain only those values used a

specific interval after restore
● Probably most useful on the slowest sorts of

systems, providing portability between them
● “Intrinsic Checkpoints with Binary Modification”

http://deepblue.lib.umich.edu/handle/2027.42/60726

http://deepblue.lib.umich.edu/handle/2027.42/60726

Checkpoint Interoperability

● Speculative, but what if QEMU linux-user mode,
CRIU, core dumps, and self-restoring checkpoints
could interoperate?

● crit becomes a babelcheckpoint of sorts?

Thank You

Copyright (c) 2015, The Linux Foundation. All rights reserved.

This work is licensed under the terms of the GNU General Public License
version 2 and only version 2 as published by the Free Software

Foundation.

This work is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

Christopher Covington is an employee of the Qualcomm Innovation
Center, Inc. The Qualcomm Innovation Center, Inc. is a member of the

Code Aurora Forum, a Linux Foundation Collaborative Project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

