Optimizing the QEMU Storage Stack

Stefan Hajnoczi — stefan.hajnoczi@uk.ibm.com
Open Virtualization
IBM Linux Technology Center

2010

Agenda

« The QEMU storage stack

« QEMU architecture

« Virtio-blk and the request lifecycle
 Performance challenges today

* Instrumenting the storage stack

« Out-of-line I/O emulation using ioeventfd

« Reducing lock contention with unlocked kick
* Prototyping a threaded device model

QEMU storage performance

« KVM and Xen have made Linux virtualization
popular.

- CPU vendors addressed performance
challenges with hardware assist features.
- Performance is good for CPU bound
workloads, but I/O remains a challenge.
 Goal: Storage performance under virtualization
should be comparable to bare metal.

- Virtualization overhead must be minimized.

« Comparisons can be made by running
benchmarks inside a virtual machine and
directly on the host.

- Need to be careful about fair apples-to-
apples comparisons.

Virtualized storage approach in QEMU

* |In virtualization, the hypervisor needs to
mahage resources between virtual machines.

e Bare metal does not have to do this because
there are no shared resources.

« Two approaches:

- Multiplexing resources (e.g. emulation).
Control is in hypervisor, flexible, slow.

- Passthrough or hardware assist (e.g. PCI
device assignment). Hypervisor is involved
less, less flexible, fast.

 Today's users mostly rely on multiplexed
storage resources.

» Let's look at the QEMU storage stack to
understand how storage is emulated.

The QEMU storage stack

*Application and guest kernel
work similar to bare metal.
Guest talks to QEMU via
emulated hardware.

Hardware emulation = *QEMU performs I/O to an
iImage file on behalf of the

guest.

Host kernel treats guest I/O
like any userspace
application.

" Host

Image format (optional)

QEMU

Seeing double

There may be two file systems. The guest file
system and the host file system (which holds
the image file).

There may be two volume managers. The
guest and host can both use LVM and md
independently.

There are two page caches. Both guest and
host can buffer pages from a file.

There are two I/0O schedulers. The guest will
reorder or delay I/O but the host will too.

Configuring either the guest or the host to

bypass these layers typically leads to best
performance.

QEMU Architecture

« Each guest CPU has a
dedicated vcpu
thread that uses the

vepud vepud | 7O kvm.ko module to

thread execute guest code.

e Thereis an 1/O
thread that runs a
select(2) loop to
handle events.

gemu-kvm

* Only one thread may be executing QEMU code at
any given time. This excludes guest code and
blocking in select(2).

Emulated storage

QEMU presents emulated storage interfaces to
the guest.

Virtio is a paravirtualized storage interface,
delivers the best performance, and is
extensible for the future.

- One virtio-blk PCl adapter per block device
IDE emulation is used for CD-ROMs and is also
available for disks.

- Good guest compatibility but low
performance
SCSI emulation can be used for special
applications but note virtio can do SCSI
passthrough.

Virtio-blk request lifecycle

1. Publish req
\

Vring Data Vring

R, i S -

2. Virtqueue kick 3. DMA 4. Publish resp 5. Interrupt

« Request/response data and metadata live in
guest memory.

« Virtqueue kick is a pio write to a virtio PCI
hardware register.

« Completion is signaled by virtio PCI interrupt.

Symptoms of poor performance

Low throughput compared to bare metal.

- <40% of bare metal: fix your
configuration

- 40-75%: legitimate configuration that needs
optimizations in QEMU and Linux

High guest CPU utilization due to disk 1/O.
High latency compared to bare metal.

- Matters most for synchronous applications.
Investigate by instrumenting the stack.

Instrumenting the storage stack

Goal: Identify latency overheads imposed by
the QEMU storage stack.

Linux and QEMU tracing mechanisms allow
lightweight logging.

Timestamps reveal how much time was spent
In each layer of the stack.

Challenges:

- Combining traces from different sources
(guest, QEMU, host kernel).
- Reliable timing across host/guest boundary.
For details and git branch:
http://www.linux-kvm.org/page/Virtio/Block/Latency

http://www.linux-kvm.org/page/Virtio/Block/Latency

Time spent

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Sequential 4k read Iatency

1 vcpu, 4 GB RAM, x2apic, virtio-blk cache=none gues
2x4-core, 8 GB RAM, 12 LVM striped LUNs over FC

kvm.git host kernel, gemu-kvm.git 0.12.4

Delta (ns)

B Guest

Host/guest
switching

B Host/QEMU
switching

B QEMU
Host I/O

QEMU latency timeline

iothread VCpu

SYSTEM CALL | USERSPACE SYSTEM CALL | USERSPACE

DURATION {us)
selectl) 271

DURATION {us)
wctlKVM_ RUN) 224
8§ (Misleading,
see std deviation)
read() =8 1
|
io getevents() 1 . e .
1 1o submit() 16
—]
ioctKVM_RUN)
ioctl{ KVM_IRQ LINE) 4
|
read() = -EAGAIN 1

selecti)

virtio-ioeventfd

« Vcpu thread should be running guest code and
not QEMU code!

« Stealing time from the guest has
consequences:

- High guest system time (symptom)
- Lock contention for SMP guests

« Use ioeventfd to decouple for virtqueue kicks
from vcpu thread execution.

 This is the model used by vhost-net for Iin-
kernel virtio-net emulation.

« Takes advantage of spare cycles on host.

« Potentially has overhead on a fully loaded host.
- Needs to be looked at with vhost-net too.

Virtio-ioeventfd results

« cache=none, x2apic, aio=native, 2.6.32, raw
on ext4. Blue=bare metal, yellow=unmodified
KVM, green=virtio-ioeventfd

m

@

W

&I 300.0

= _

= 250.0

=

£

£ 200.0 .

=

© 150.0 r -

ﬁ r—

m 100.0

w

= 50.0 — | s

@

5 00 [T [T | [T | [T |

@ =) W ol o i w =)) W) = W ol

> 5 B ® 0 B ® 8 B ® 8 B B

< E ®9 ¢ E ©po 9 £ @9 C9¢ E ©p 0
— c c — O = — - e — L L
- — - — - — — - — —

Large File Creates Sequential Reads Random Reads Random Writes

unlocked-kick

 For SMP guests, the virtio-blk spinlock is at the
top of CPU profiles and lockstat.

e 2 vCpu guest, virtio-blk on 16 core host:

Events: 456K cycles
Overhead Command Shared Object Symbol

51.94% gemu-kvm [guest.kernel.kallsyms] [g] .text.lock.spinlock

2.59% gemu-kvm 3b698bb8d2 [u] 0x00003b698bb8d2

1.13% gemu-kvm [guest.kernel.kallsyms] [g] blockdev direct IO
1.10% gemu-kvm [guest.kernel.kallsyms] [g] find get block
1.03% gemu-kvm [guest.kernel.kallsyms] [g] kmem cache free
1.03% gemu-kvm [guest.kernel.kallsyms] [g] kmem cache alloc
0.83% gemu-kvm [ext3] [g] ext3 get inode loc

0.82% gemu-kvm [Jjbd] [g] do get write access

0.74% gemu-kvm [Jjbd] [g] Journal add journal head

0.73% gemu-kvm [guest.kernel.kallsyms] [g] make request
0.58% gemu-kvm [ext3] [g] ext3 mark iloc dirty

0.58% gemu-kvm [guest.kernel.kallsyms] [g] spin lock

0.57% gemu-kvm [guest.kernel.kallsyms] [g] ioread8

0.56% gemu-kvm [guest.kernel.kallsyms] [g] schedule

0.56% gemu-kvm [guest.kernel.kallsyms] [g] radix tree lookup
0.54% gemu-kvm [guest.kernel.kallsyms] [g] kfree

0.54% gemu-kvm [guest.kernel.kallsyms] [g] bit waitqueue

unlocked-kick

 The block layer allows driver to release block
queue lock in its request processing function.

« This avoids spinning other vcpus:

Events: 293K cycles

Overhead Command Shared Object Symbol
I & o o (SPIPI . © R0 o c i
5.65% gemu-kvm 3b6787aaa9 [u] 0x00003b6787aaal

3.73% gemu-kvm [guest.kernel.kallsyms] [g] .text.lock.spinlock
2.19% gemu-kvm [guest.kernel.kallsyms] [g] blockdev direct IO
2.14% gemu-kvm [guest.kernel.kallsyms] [g] kmem cache free
2.13% gemu-kvm [guest.kernel.kallsyms] [g] find get block
2.00% gemu-kvm [guest.kernel.kallsyms] [g] kmem cache alloc
1.63% gemu-kvm [ext3] [g] ext3 get inode loc

1.62% gemu-kvm [Jbd] [g] do get write access

1.57% gemu-kvm [Jjbd] [g] Journal add journal head

1.46% gemu-kvm [guest.kernel.kallsyms] [g] spin lock

1.17% gemu-kvm [guest.kernel.kallsyms] [g] schedule

1.17% gemu-kvm [ext3] [g] ext3 mark iloc dirty

1.09% gemu-kvm [guest.kernel.kallsyms] [g] iowritel6

1.08% gemu-kvm [virtio ring] [g] vring kick

1.06% gemu-kvm [guest.kernel.kallsyms] [g] radix tree lookup
1.06% gemu-kvm [guest.kernel.kallsyms] [g] bit waitqueue

1.06% gemu-kvm [guest.kernel.kallsyms] [g] kfree

Virtio-blk dataplane

 Experiment to build a dedicated thread per
virtio-blk device outside of QEMU's global
mutex.
- No global mutex, better scalability
- Proof of concept for a threaded device model
« Rewrite virtio-blk emulation without
dependencies on QEMU core code (not thread-
safe).

 Only supports raw image format because other
formats have state and dependencies on QEMU
core.

« Git branch:
http://repo.or.cz/w/gemu/stefanha.git/shortlog/r
efs/heads/virtio-blk-data-plane

Dataplane model

\/ \J

» Virtqueue kicks
from guest are
delivered to
dataplane thread
using ioeventfd.

« Completion
Interrupt injected
from dataplane
thread using ioctl
to kvm.ko.

Dataplane FFSB Results
KVM Guest = 2 vcpus, 4GB; KVM Host = 16 cpus, 12GB; Linux 2.6.32
KVM configuration = virtio-blk, no cache, aio=native
DS3400 Storage w/ 8 x 24-disk RAID10 Arrays, ext4 (no barrier)

250.0

200.0

[KVM guest w/
150.0 upstream-
ioeventfd-
unlocked-kick

B KVM guest w/
bypassing current
QEMU core

100.0

50.0

U A

Large Seque Rando Rando Mail

Average FFSB Throughput (MB/sec)

File ntial m m Server
Create Reads Reads Writes (bs=8
s (bs=8 (bs=8 (bs=8 KB)

(bs=8 KB) KB) KB)
KB)

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

