
Linux is a registered trademark of Linus Torvalds.

Optimizing the QEMU Storage Stack

Stefan Hajnoczi – stefan.hajnoczi@uk.ibm.com
Open Virtualization
IBM Linux Technology Center

2010

Agenda
● The QEMU storage stack
● QEMU architecture
● Virtio-blk and the request lifecycle
● Performance challenges today
● Instrumenting the storage stack
● Out-of-line I/O emulation using ioeventfd
● Reducing lock contention with unlocked kick
● Prototyping a threaded device model

QEMU storage performance
● KVM and Xen have made Linux virtualization

popular.
– CPU vendors addressed performance

challenges with hardware assist features.
– Performance is good for CPU bound

workloads, but I/O remains a challenge.
● Goal: Storage performance under virtualization

should be comparable to bare metal.
– Virtualization overhead must be minimized.

● Comparisons can be made by running
benchmarks inside a virtual machine and
directly on the host.

– Need to be careful about fair apples-to-
apples comparisons.

Virtualized storage approach in QEMU

● In virtualization, the hypervisor needs to
manage resources between virtual machines.

● Bare metal does not have to do this because
there are no shared resources.

● Two approaches:
– Multiplexing resources (e.g. emulation).

Control is in hypervisor, flexible, slow.
– Passthrough or hardware assist (e.g. PCI

device assignment). Hypervisor is involved
less, less flexible, fast.

● Today's users mostly rely on multiplexed
storage resources.

● Let's look at the QEMU storage stack to
understand how storage is emulated.

The QEMU storage stack

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

•Application and guest kernel
work similar to bare metal.
•Guest talks to QEMU via
emulated hardware.

•QEMU performs I/O to an
image file on behalf of the
guest.
•Host kernel treats guest I/O
like any userspace
application.

Guest QEMU Host

Seeing double
● There may be two file systems. The guest file

system and the host file system (which holds
the image file).

● There may be two volume managers. The
guest and host can both use LVM and md
independently.

● There are two page caches. Both guest and
host can buffer pages from a file.

● There are two I/O schedulers. The guest will
reorder or delay I/O but the host will too.

● Configuring either the guest or the host to
bypass these layers typically leads to best
performance.

QEMU Architecture
● Each guest CPU has a

dedicated vcpu
thread that uses the
kvm.ko module to
execute guest code.

● There is an I/O
thread that runs a
select(2) loop to
handle events.kvm.ko

vcpu0 vcpu1
I/O

thread

qemu-kvm

Linux

● Only one thread may be executing QEMU code at
any given time. This excludes guest code and
blocking in select(2).

Emulated storage
● QEMU presents emulated storage interfaces to

the guest.
● Virtio is a paravirtualized storage interface,

delivers the best performance, and is
extensible for the future.

– One virtio-blk PCI adapter per block device
● IDE emulation is used for CD-ROMs and is also

available for disks.
– Good guest compatibility but low

performance
● SCSI emulation can be used for special

applications but note virtio can do SCSI
passthrough.

Virtio-blk request lifecycle

● Request/response data and metadata live in
guest memory.

● Virtqueue kick is a pio write to a virtio PCI
hardware register.

● Completion is signaled by virtio PCI interrupt.

Data

2. Virtqueue kick 5. Interrupt3. DMA

Vring

1. Publish req

Vring

4. Publish resp

Symptoms of poor performance
● Low throughput compared to bare metal.

– <40% of bare metal: fix your
configuration

– 40-75%: legitimate configuration that needs
optimizations in QEMU and Linux

● High guest CPU utilization due to disk I/O.
● High latency compared to bare metal.

– Matters most for synchronous applications.
● Investigate by instrumenting the stack.

Instrumenting the storage stack
● Goal: Identify latency overheads imposed by

the QEMU storage stack.
● Linux and QEMU tracing mechanisms allow

lightweight logging.
● Timestamps reveal how much time was spent

in each layer of the stack.
● Challenges:

– Combining traces from different sources
(guest, QEMU, host kernel).

– Reliable timing across host/guest boundary.
● For details and git branch:

http://www.linux-kvm.org/page/Virtio/Block/Latency

http://www.linux-kvm.org/page/Virtio/Block/Latency

Delta (ns)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sequential 4k read latency
1 vcpu, 4 GB RAM, x2apic, virtio-blk cache=none guest

2x4-core, 8 GB RAM, 12 LVM striped LUNs over FC
kvm.git host kernel, qemu-kvm.git 0.12.4

Guest
Host/guest
switching
Host/QEMU
switching
QEMU
Host I/O

T
im

e
sp

en
t

Delta name

Guest
Host/guest switching
Host/QEMU switching
QEMU
Host I/O

QEMU latency timeline

virtio-ioeventfd
● Vcpu thread should be running guest code and

not QEMU code!
● Stealing time from the guest has

consequences:
– High guest system time (symptom)
– Lock contention for SMP guests

● Use ioeventfd to decouple for virtqueue kicks
from vcpu thread execution.

● This is the model used by vhost-net for in-
kernel virtio-net emulation.

● Takes advantage of spare cycles on host.
● Potentially has overhead on a fully loaded host.

– Needs to be looked at with vhost-net too.

Virtio-ioeventfd results
● cache=none, x2apic, aio=native, 2.6.32, raw

on ext4. Blue=bare metal, yellow=unmodified
KVM, green=virtio-ioeventfd

unlocked-kick
● For SMP guests, the virtio-blk spinlock is at the

top of CPU profiles and lockstat.
● 2 vcpu guest, virtio-blk on 16 core host:

Events: 456K cycles #
Overhead Command Shared Object Symbol #
........ #
51.94% qemu-kvm [guest.kernel.kallsyms] [g] .text.lock.spinlock
2.59% qemu-kvm 3b698bb8d2 [u] 0x00003b698bb8d2
1.13% qemu-kvm [guest.kernel.kallsyms] [g] __blockdev_direct_IO
1.10% qemu-kvm [guest.kernel.kallsyms] [g] __find_get_block
1.03% qemu-kvm [guest.kernel.kallsyms] [g] kmem_cache_free
1.03% qemu-kvm [guest.kernel.kallsyms] [g] kmem_cache_alloc
0.83% qemu-kvm [ext3] [g] __ext3_get_inode_loc
0.82% qemu-kvm [jbd] [g] do_get_write_access
0.74% qemu-kvm [jbd] [g] journal_add_journal_head
0.73% qemu-kvm [guest.kernel.kallsyms] [g] __make_request
0.58% qemu-kvm [ext3] [g] ext3_mark_iloc_dirty
0.58% qemu-kvm [guest.kernel.kallsyms] [g] _spin_lock
0.57% qemu-kvm [guest.kernel.kallsyms] [g] ioread8
0.56% qemu-kvm [guest.kernel.kallsyms] [g] schedule
0.56% qemu-kvm [guest.kernel.kallsyms] [g] radix_tree_lookup
0.54% qemu-kvm [guest.kernel.kallsyms] [g] kfree
0.54% qemu-kvm [guest.kernel.kallsyms] [g] bit_waitqueue

unlocked-kick
● The block layer allows driver to release block

queue lock in its request processing function.
● This avoids spinning other vcpus:

Events: 293K cycles #
Overhead Command Shared Object Symbol
........ #
5.65% qemu-kvm 3b6787aaa9 [u] 0x00003b6787aaa9
3.73% qemu-kvm [guest.kernel.kallsyms] [g] .text.lock.spinlock
2.19% qemu-kvm [guest.kernel.kallsyms] [g] __blockdev_direct_IO
2.14% qemu-kvm [guest.kernel.kallsyms] [g] kmem_cache_free
2.13% qemu-kvm [guest.kernel.kallsyms] [g] __find_get_block
2.00% qemu-kvm [guest.kernel.kallsyms] [g] kmem_cache_alloc
1.63% qemu-kvm [ext3] [g] __ext3_get_inode_loc
1.62% qemu-kvm [jbd] [g] do_get_write_access
1.57% qemu-kvm [jbd] [g] journal_add_journal_head
1.46% qemu-kvm [guest.kernel.kallsyms] [g] _spin_lock
1.17% qemu-kvm [guest.kernel.kallsyms] [g] schedule
1.17% qemu-kvm [ext3] [g] ext3_mark_iloc_dirty
1.09% qemu-kvm [guest.kernel.kallsyms] [g] iowrite16
1.08% qemu-kvm [virtio_ring] [g] vring_kick
1.06% qemu-kvm [guest.kernel.kallsyms] [g] radix_tree_lookup
1.06% qemu-kvm [guest.kernel.kallsyms] [g] bit_waitqueue
1.06% qemu-kvm [guest.kernel.kallsyms] [g] kfree

Virtio-blk dataplane
● Experiment to build a dedicated thread per

virtio-blk device outside of QEMU's global
mutex.

– No global mutex, better scalability
– Proof of concept for a threaded device model

● Rewrite virtio-blk emulation without
dependencies on QEMU core code (not thread-
safe).

● Only supports raw image format because other
formats have state and dependencies on QEMU
core.

● Git branch:
http://repo.or.cz/w/qemu/stefanha.git/shortlog/r
efs/heads/virtio-blk-data-plane

Dataplane model
● Virtqueue kicks

from guest are
delivered to
dataplane thread
using ioeventfd.

● Completion
interrupt injected
from dataplane
thread using ioctl
to kvm.ko.

Linux

dataplane
thread

vcpu

Large
File
Create
s
(bs=8
KB)

Seque
ntial
Reads
(bs=8
KB)

Rando
m
Reads
(bs=8
KB)

Rando
m
Writes
(bs=8
KB)

Mail
Server
(bs=8
KB)

0.0

50.0

100.0

150.0

200.0

250.0

Dataplane FFSB Results
KVM Guest = 2 vcpus, 4GB; KVM Host = 16 cpus, 12GB; Linux 2.6.32

KVM configuration = virtio-blk, no cache, aio=native
DS3400 Storage w/ 8 x 24-disk RAID10 Arrays, ext4 (no barrier)

KVM guest w/
upstream-
ioeventfd-
unlocked-kick
KVM guest w/
bypassing current
QEMU core

A
ve

ra
g

e
F

F
S

B
 T

h
ro

u
g

h
p

u
t

(M
B

/s
ec

)

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

