09'Linux Plumbers Conference

Data de-duplication

Mingming Cao
IBM Linux Technology Center

2009-09-25

mailto:cmm@us.ibm.com

Current storage challenges

 Our world 1s facing data explosion. Data 1s growing
In a amazing rate

e Severe challenges just storing the data we have
today, imagine how much more difficult and
expensive storing six times more data tomorrow.

e Eliminating redundant data 1s very important!

Existing technology...

Hard links/cow/file
clone

Compression

All are done at file
level. There are more
room to save space
from.

Imagine this ...

lpc-dedup.ods m

1 Copy to another file

lpc-dedup-1.0ds m

Made slight modification and
2 as another file

é

lpc-dedup-2.0ds

Backup

l|pc-dedup-3.0ds

Definition

e Data de-duplication

A method of reducing storage needs by eliminating
redundant data. Only one unique instance of the data
1s actually retained on storage media, such as disk or
tape. Redundant data is replaced with a pointer to
the unique data copy.

e Data de-duplication 1s extended compression, more
efficient to remove the redundant data. Could be
done at file level, sub-file(block) level and even bit
level

de-duplication before

dedup.ods file2.0ds

de-duplication after

dedup.ods file2.0ds

de-duplication for VM

S — e e

0 — ey
5 —. prrrrrrr
5 e e e o1 e

de-duplication for VM (after)

VM2 VM3

SPE
Pz /@$/

s

free | free | free | free free | free | free | free

de-duplication benefit

 Two major savings
— Storage footprint(6x healthcare, 3x VM, 20x backup)
— Network bandwidth to transfer data across WAN

e Disks are cheep, but there 1s more than just space

— Save more energy (power) and cooling
— Daisaster and recovery becomes manageable

— Save resources to manage same amount of data

e Typical workload: Backup, Archives, Healthcare,
Virtualization, NAS, remote office etc.

de-duplication concerns

e Large CPU and memory resources required for de-
duplication processing

* Potentially more fragmented files/filesystem
e Potentially increase risk of lost data
e Might not work with encryption

e Hash collison still possible

de-duplication ratios

e Indicating how much reduction by de-duplication

— Before 50TB, after 10TB, ratio 1s 3:1
e Ratio could various from 2:1 to 10:1, depends on

— Type of data
— Change rate of the data
— Amount of redundant data

— Type of backup pertormed (full, incremental or
differential)

— de-duplication methods

de-duplication process

generates a Has seen

unique this key in IS e : store new
number the index = :[[?eg\dex data to disk

(key) before?

Duplicated,
reference to
the orignal
data

Where: source vs target

 method where advantages | disadvantages

Reduce network
bandwidth;Awareness
of data usage and
format may allow more
effective data dedup

performed at the data
source, before transfer
to target location

Applies to any type of
filesystem; No impact to
data ingestion;possible

for parellel data
deduplication

performed at the target
(e.g. by backup
software or storage
appliance)

Deduplication
consumes CPU cycles
on the file/ application
server; May not dedup
files across various
sources

Deduplication consumes
CPU cycles on the
target server or storage
device

When: In-line vs Post process

 method when advantages | disadvantages

deduplication occurs in

the primary data path. | Immediate data

No data is written to reduction, uses the
disk until the least disk space No
deduplication process | post-processing

Perfornance concerns,
high cput and memory
cost;

is complete.

Deduplication occurs | Easy to implement; No
Post on the secondary impact to data
storage. Data were ingestion;possible for
first store data on disk parellel data
and then deduplicate deduplication

Data being processed
twice; Need extra space
for dedup;Race with
concurrent writes

process

In-line de-dup in btrfs:
How to detect the redundancy?

Make sense...Btrfs already create checksum for
every fs block, and stored on disk. Re-use hash
value for duplication key.

To speed look up, need separate checksum index
tree, indexed by checksums rather than logical offset

Duplication screen could happen at data writeout
time. After data get compressed, but betore delayed
allocation allocate space and flush-out data

It hash collision occurs, do byte to byte compare to
ensure no data lost

In-line de-dup in btrfs:
How to lower the cost?

e Memory usage 1s the key to dedup performance

— The dedup hash tree needs in memory. For 1TB {s
needs 8G RAM for SHA256, or 4G RAM for MD5

— Make dedup optional: filesystem mount option, or
enable/disable dedup on file/subvolumes etc

e Fragmentation

— Apply policies to defrag to group shared files close
to each other

— Reduce seek time: frequently and lately shared
blocks are likely already pinged in memory

— Might be less an 1ssue with SSD

In-line dedup in btrfs:
Keep the impact low

e Could have impact to running applications

e Gets some latency stats, enable/disable dedup if
ingestion 1s high

e Could have a background scrub thread to do dedup

on files that didn't get dedup in-line before writeout
to disk

* Flag to each btrfs extent to indicating deduped or
not, to avoid double dedup

User space de-duplication?

User apps do the job instead of kernel. Could avoid
ingestion.

Could apply to any filesystem (ext4, btrfs, xis etc)

The checksum 1s maintained 1n userspace.

Introduce VFS API to allow apps to poll whether
chunk of data have been modified before merge

— Could use 1node ctime/mtime or inode version

— Better, a new system call to tell a range of
file(offset, size,transaction ID) has be changed
since then

Summary

e Linux needs data de-duplication technology to able
to control data explosion ...

* One size won't fit all ... perhaps both?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

