
Linux is a registered trademark of Linus Torvalds.

Evaluating storage APIs for
QEMU

Anthony Liguori – aliguori@us.ibm.com
Open Virtualization
IBM Linux Technology Center

Linux Plumbers Conference 2009

mailto:aliguori@us.ibm.com
file:///home/dave/linuxplumbersconf.org/var/www/linuxplumbersconf.org/htdocs/2009/slides/

The V-Word
● QEMU is used by Xen and KVM for I/O but...

– this is not a virtualization talk
● Let's just think of QEMU as a userspace process

that can run a variety of “workloads”
● Think of it like dbench
● These workloads tend to be very intelligent

about how they access storage
● Workloads have incredible performance

demands
● Our goal is to give our users the best possible

performance by default
– Should Just Work

We want
● Asynchronous completion
● Scatter/gather lists
● Batch submission
● Ability to tell kernel about request ordering

requirements
● Ability to maintain CPU affinity for request

processing

Hello World

Posix read()/write()
● Our very first implementation
● We handled requests synchronously, using

read()/write()
● Scatter/gather lists were bounced
● Main problem with this approach:

– Workload cannot run while processing I/O
request

– I/O performance is terrible
– Because workload doesn't run while waiting

for I/O, CPU performance is terrible too

Worker thread

First improvement
● Have a single worker thread
● I/O requests are now asynchronous

– No more horrendous CPU overhead
● We still bounce
● We can only handle one request at a time
● Never merged upstream (Xen only)

posix-aio

Upstream solution
● Use posix-aio to support portable AIO
● Yay!
● Reasonable API

– Can batch requests
– Supports async notification via signals

● Except it's terrible

Posix-aio shortcomings
● Under the covers, it uses a thread pool
● Requires bouncing
● API is not extendable by mere mortals

– New APIs must be accepted by POSIX before
implementing in glibc (or so I was told)

● Biggest problem was this comment in glibc:
● “ The current file descriptor is worked on. It makes no sense

to start another thread since this new thread would fight with
the running thread for the resources.”

● Cannot support multiple AIO requests in flight
on a single file descriptor; no response from
Ulrich about removing this restriction

● Signal based completion is painful to use

Other posix-aio's
● It's not just glibc that screws it up
● FreeBSD has a nice posix-aio implementation

that's supported by a kernel module
● If you use posix-aio without this module loaded,

you get a SEGV
● You need non-portable code to detect if this

kernel module is not loaded, and then a
fallback mechanism that isn't posix-aio since a
non-privileged user cannot load kernel modules

● Posix-aio always requires a fallback

linux-aio: tux saves the day!

linux-aio
● Forget portability, let's use a native linux

interface
● Fall back to something lame for everything else
● Very nice interface

– Supports scatter/gather requests
– Can submit multiple requests at once

● Except it's terrible

linux-aio shortcomings
● Originally, no async notification

– Must use special blocking function
– Signal support added
– Eventfd support added
– Neither mechanism is probe-able in software

so you have to guess at compile time
– Libaio spent a good period of time in an

unmaintained state making eventfd
support unavailable in even modern distros
(SLES11)

● Only works on some types of file descriptors
– Usually, O_DIRECT

● If used on an unsupported file descriptor, you
get no error, io_submit() just blocks

!@#!@@$#!!#@#!#@

linux-maybe-sometimes-aio
● There is no right way to use this API if you

actually care about asynchronous IO requests
● You either have to

– Require a user to enable linux-aio
– Be extremely conversation and limit

yourselves to things you know work today
like O_DIRECT on a physical device

● No guarantee these cases will keep working
● No way of detecting when new cases are added
● The API desperately needs feature detection
● It's only useful for databases and

benchmarking tools

Let's fix posix-aio

Our own thread pool
● Implement our own posix-aio but don't enforce

arbitrary limits
● Still cannot submit multiple requests on a file

descriptor because of seek/read race
– Thread1: lseek -> readv
– Thread2: lseek -> (race) -> writev

● Tried various work-arounds with dup() (FAIL)
● Bounce buffers and use pread/pwrite
● Introduce preadv/pwritev

– We now have zero copy and simultaneous
request processing

Shortcomings
● Thread switch cost is non-negligible
● We don't have a true batch submission API to

the kernel
– Tagging semantics don't map very well

● Not very CFQ friendly
– Each thread is considered a different IO

context, CFQ waits for each thread to
submit more requests resulting in long
delays

– Fixable with CLONE_IO – not exposed
through pthreads

– Some attempts at improving upstream

Compromise

What we do today
● We use linux-aio when we think it's safe

– Gives us better performance
– Only use with block devices
– Lose features such as host page cache

sharing
– For certain configurations, like c _ _ _ d,

making use of the host page cache is
absolutely critical

– Most users use file backed images
● We fall back to our thread pool otherwise

– Good compromise of performance and
features

– But we know we can do better

What's coming

acall/syslets
● Both are kernel thread pool

– Avoid thread creation when request can
complete immediately (nice)

– Lighter weight threads
– Potentially better thread pool management

● acall has a narrower scope
– No clear benefit today over userspace thread

pool other than introducing interfaces
– Seems easier to merge upstream

● syslets have a broader scope
– Complex ability to chain system calls without

returning to userspace
– Seems to have lost merge momentum

acall/syslet shortcomings
● Still does not solve some of the fundamental

semantic mapping issues
– Neither are very useful for our workloads

without preadv/pwritev
– Neither help request tagging as request

ordering is fundamentally lost in a thread
pool

– Still not obvious how to extend
preadv/pwritev paradigm to support
tagging

– Both have clear benefits though

Overall uncertainty
● We're willing to fix linux-aio
● We're willing to help solve the problems around

acall/syslets
● The lack of clarity around the future makes it

difficult though to begin
● Other v-word solutions use custom userspace

block IO interfaces to avoid these problems
– Using confusing terms like “in-kernel

paravirtual block device backend” to avoid
real review

– It would be much better to fix the generic
interfaces so everyone benefits

– It's a battle we're losing so far

Questions
● Questions?

Linux is a registered trademark of Linus Torvalds.

Evaluating storage APIs for
QEMU

Anthony Liguori – aliguori@us.ibm.com
Open Virtualization
IBM Linux Technology Center

Linux Plumbers Conference 2009

The V-Word
● QEMU is used by Xen and KVM for I/O but...

– this is not a virtualization talk
● Let's just think of QEMU as a userspace process

that can run a variety of “workloads”
● Think of it like dbench
● These workloads tend to be very intelligent

about how they access storage
● Workloads have incredible performance

demands
● Our goal is to give our users the best possible

performance by default
– Should Just Work

We want
● Asynchronous completion
● Scatter/gather lists
● Batch submission
● Ability to tell kernel about request ordering

requirements
● Ability to maintain CPU affinity for request

processing

Hello World

Posix read()/write()
● Our very first implementation
● We handled requests synchronously, using

read()/write()
● Scatter/gather lists were bounced
● Main problem with this approach:

– Workload cannot run while processing I/O
request

– I/O performance is terrible
– Because workload doesn't run while waiting

for I/O, CPU performance is terrible too

Worker thread

First improvement
● Have a single worker thread
● I/O requests are now asynchronous

– No more horrendous CPU overhead
● We still bounce
● We can only handle one request at a time
● Never merged upstream (Xen only)

posix-aio

Upstream solution
● Use posix-aio to support portable AIO
● Yay!
● Reasonable API

– Can batch requests
– Supports async notification via signals

● Except it's terrible

Posix-aio shortcomings
● Under the covers, it uses a thread pool
● Requires bouncing
● API is not extendable by mere mortals

– New APIs must be accepted by POSIX before
implementing in glibc (or so I was told)

● Biggest problem was this comment in glibc:
● “ The current file descriptor is worked on. It makes no sense

to start another thread since this new thread would fight with
the running thread for the resources.”

● Cannot support multiple AIO requests in flight
on a single file descriptor; no response from
Ulrich about removing this restriction

● Signal based completion is painful to use

Other posix-aio's
● It's not just glibc that screws it up
● FreeBSD has a nice posix-aio implementation

that's supported by a kernel module
● If you use posix-aio without this module loaded,

you get a SEGV
● You need non-portable code to detect if this

kernel module is not loaded, and then a
fallback mechanism that isn't posix-aio since a
non-privileged user cannot load kernel modules

● Posix-aio always requires a fallback

linux-aio: tux saves the day!

linux-aio
● Forget portability, let's use a native linux

interface
● Fall back to something lame for everything else
● Very nice interface

– Supports scatter/gather requests
– Can submit multiple requests at once

● Except it's terrible

linux-aio shortcomings
● Originally, no async notification

– Must use special blocking function
– Signal support added
– Eventfd support added
– Neither mechanism is probe-able in software

so you have to guess at compile time
– Libaio spent a good period of time in an

unmaintained state making eventfd
support unavailable in even modern distros
(SLES11)

● Only works on some types of file descriptors
– Usually, O_DIRECT

● If used on an unsupported file descriptor, you
get no error, io_submit() just blocks

!@#!@@$#!!#@#!#@

linux-maybe-sometimes-aio
● There is no right way to use this API if you

actually care about asynchronous IO requests
● You either have to

– Require a user to enable linux-aio
– Be extremely conversation and limit

yourselves to things you know work today
like O_DIRECT on a physical device

● No guarantee these cases will keep working
● No way of detecting when new cases are added
● The API desperately needs feature detection
● It's only useful for databases and

benchmarking tools

Let's fix posix-aio

Our own thread pool
● Implement our own posix-aio but don't enforce

arbitrary limits
● Still cannot submit multiple requests on a file

descriptor because of seek/read race
– Thread1: lseek -> readv
– Thread2: lseek -> (race) -> writev

● Tried various work-arounds with dup() (FAIL)
● Bounce buffers and use pread/pwrite
● Introduce preadv/pwritev

– We now have zero copy and simultaneous
request processing

Shortcomings
● Thread switch cost is non-negligible
● We don't have a true batch submission API to

the kernel
– Tagging semantics don't map very well

● Not very CFQ friendly
– Each thread is considered a different IO

context, CFQ waits for each thread to
submit more requests resulting in long
delays

– Fixable with CLONE_IO – not exposed
through pthreads

– Some attempts at improving upstream

Compromise

What we do today
● We use linux-aio when we think it's safe

– Gives us better performance
– Only use with block devices
– Lose features such as host page cache

sharing
– For certain configurations, like c _ _ _ d,

making use of the host page cache is
absolutely critical

– Most users use file backed images
● We fall back to our thread pool otherwise

– Good compromise of performance and
features

– But we know we can do better

What's coming

acall/syslets
● Both are kernel thread pool

– Avoid thread creation when request can
complete immediately (nice)

– Lighter weight threads
– Potentially better thread pool management

● acall has a narrower scope
– No clear benefit today over userspace thread

pool other than introducing interfaces
– Seems easier to merge upstream

● syslets have a broader scope
– Complex ability to chain system calls without

returning to userspace
– Seems to have lost merge momentum

acall/syslet shortcomings
● Still does not solve some of the fundamental

semantic mapping issues
– Neither are very useful for our workloads

without preadv/pwritev
– Neither help request tagging as request

ordering is fundamentally lost in a thread
pool

– Still not obvious how to extend
preadv/pwritev paradigm to support
tagging

– Both have clear benefits though

Overall uncertainty
● We're willing to fix linux-aio
● We're willing to help solve the problems around

acall/syslets
● The lack of clarity around the future makes it

difficult though to begin
● Other v-word solutions use custom userspace

block IO interfaces to avoid these problems
– Using confusing terms like “in-kernel

paravirtual block device backend” to avoid
real review

– It would be much better to fix the generic
interfaces so everyone benefits

– It's a battle we're losing so far

Questions
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

