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The V-Word
● QEMU is used by Xen and KVM for I/O but...

– this is not a virtualization talk
● Let's just think of QEMU as a userspace process 

that can run a variety of “workloads”
● Think of it like dbench
● These workloads tend to be very intelligent 

about how they access storage
● Workloads have incredible performance 

demands
● Our goal is to give our users the best possible 

performance by default
– Should Just Work



We want
● Asynchronous completion
● Scatter/gather lists
● Batch submission
● Ability to tell kernel about request ordering 

requirements
● Ability to maintain CPU affinity for request 

processing



Hello World



Posix read()/write()
● Our very first implementation
● We handled requests synchronously, using 

read()/write()
● Scatter/gather lists were bounced
● Main problem with this approach:

– Workload cannot run while processing I/O 
request

– I/O performance is terrible
– Because workload doesn't run while waiting 

for I/O, CPU performance is terrible too



Worker thread



First improvement
● Have a single worker thread
● I/O requests are now asynchronous

– No more horrendous CPU overhead
● We still bounce
● We can only handle one request at a time
● Never merged upstream (Xen only)



posix-aio



Upstream solution
● Use posix-aio to support portable AIO
● Yay!
● Reasonable API

– Can batch requests
– Supports async notification via signals

● Except it's terrible



Posix-aio shortcomings
● Under the covers, it uses a thread pool
● Requires bouncing
● API is not extendable by mere mortals

– New APIs must be accepted by POSIX before 
implementing in glibc (or so I was told)

● Biggest problem was this comment in glibc:
● “ The current file descriptor is worked on.  It makes no sense 

to start another thread since this new thread would fight with 
the running thread for the resources.”

● Cannot support multiple AIO requests in flight 
on a single file descriptor; no response from 
Ulrich about removing this restriction

● Signal based completion is painful to use



Other posix-aio's
● It's not just glibc that screws it up
● FreeBSD has a nice posix-aio implementation 

that's supported by a kernel module
● If you use posix-aio without this module loaded, 

you get a SEGV
● You need non-portable code to detect if this 

kernel module is not loaded, and then a 
fallback mechanism that isn't posix-aio since a 
non-privileged user cannot load kernel modules

● Posix-aio always requires a fallback



linux-aio: tux saves the day!



linux-aio
● Forget portability, let's use a native linux 

interface
● Fall back to something lame for everything else
● Very nice interface

– Supports scatter/gather requests
– Can submit multiple requests at once

● Except it's terrible



linux-aio shortcomings
● Originally, no async notification

– Must use special blocking function
– Signal support added
– Eventfd support added
– Neither mechanism is probe-able in software 

so you have to guess at compile time
– Libaio spent a good period of time in an 

unmaintained state making eventfd 
support unavailable in even modern distros 
(SLES11)

● Only works on some types of file descriptors
– Usually, O_DIRECT

● If used on an unsupported file descriptor, you 
get no error, io_submit() just blocks
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linux-maybe-sometimes-aio
● There is no right way to use this API if you 

actually care about asynchronous IO requests
● You either have to

– Require a user to enable linux-aio
– Be extremely conversation and limit 

yourselves to things you know work today 
like O_DIRECT on a physical device

● No guarantee these cases will keep working
● No way of detecting when new cases are added
● The API desperately needs feature detection
● It's only useful for databases and 

benchmarking tools



Let's fix posix-aio



Our own thread pool
● Implement our own posix-aio but don't enforce 

arbitrary limits
● Still cannot submit multiple requests on a file 

descriptor because of seek/read race
– Thread1: lseek -> readv
– Thread2: lseek -> (race) -> writev

● Tried various work-arounds with dup() (FAIL)
● Bounce buffers and use pread/pwrite
● Introduce preadv/pwritev

– We now have zero copy and simultaneous 
request processing



Shortcomings
● Thread switch cost is non-negligible
● We don't have a true batch submission API to 

the kernel
– Tagging semantics don't map very well

● Not very CFQ friendly
– Each thread is considered a different IO 

context, CFQ waits for each thread to 
submit more requests resulting in long 
delays

– Fixable with CLONE_IO – not exposed 
through pthreads

– Some attempts at improving upstream



Compromise



What we do today
● We use linux-aio when we think it's safe

– Gives us better performance
– Only use with block devices
– Lose features such as host page cache 

sharing
– For certain configurations, like c _ _ _ d, 

making use of the host page cache is 
absolutely critical

– Most users use file backed images
● We fall back to our thread pool otherwise

– Good compromise of performance and 
features

– But we know we can do better



What's coming



acall/syslets
● Both are kernel thread pool

– Avoid thread creation when request can 
complete immediately (nice)

– Lighter weight threads
– Potentially better thread pool management

● acall has a narrower scope
– No clear benefit today over userspace thread 

pool other than introducing interfaces
– Seems easier to merge upstream

● syslets have a broader scope
– Complex ability to chain system calls without 

returning to userspace
– Seems to have lost merge momentum



acall/syslet shortcomings
● Still does not solve some of the fundamental 

semantic mapping issues
– Neither are very useful for our workloads 

without preadv/pwritev
– Neither help request tagging as request 

ordering is fundamentally lost in a thread 
pool

– Still not obvious how to extend 
preadv/pwritev paradigm to support 
tagging

– Both have clear benefits though



Overall uncertainty
● We're willing to fix linux-aio
● We're willing to help solve the problems around 

acall/syslets
● The lack of clarity around the future makes it 

difficult though to begin
● Other v-word solutions use custom userspace 

block IO interfaces to avoid these problems
– Using confusing terms like “in-kernel 

paravirtual block device backend” to avoid 
real review

– It would be much better to fix the generic 
interfaces so everyone benefits

– It's a battle we're losing so far



Questions
● Questions?
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